Goto

Collaborating Authors

 Xu, Juzhan


PC-Planner: Physics-Constrained Self-Supervised Learning for Robust Neural Motion Planning with Shape-Aware Distance Function

arXiv.org Artificial Intelligence

Motion Planning (MP) is a critical challenge in robotics, especially pertinent with the burgeoning interest in embodied artificial intelligence. Traditional MP methods often struggle with high-dimensional complexities. Recently neural motion planners, particularly physics-informed neural planners based on the Eikonal equation, have been proposed to overcome the curse of dimensionality. However, these methods perform poorly in complex scenarios with shaped robots due to multiple solutions inherent in the Eikonal equation. To address these issues, this paper presents PC-Planner, a novel physics-constrained self-supervised learning framework for robot motion planning with various shapes in complex environments. To this end, we propose several physical constraints, including monotonic and optimal constraints, to stabilize the training process of the neural network with the Eikonal equation. Additionally, we introduce a novel shape-aware distance field that considers the robot's shape for efficient collision checking and Ground Truth (GT) speed computation. This field reduces the computational intensity, and facilitates adaptive motion planning at test time. Experiments in diverse scenarios with different robots demonstrate the superiority of the proposed method in efficiency and robustness for robot motion planning, particularly in complex environments.


Neural Packing: from Visual Sensing to Reinforcement Learning

arXiv.org Artificial Intelligence

We present a novel learning framework to solve the transport-and-packing (TAP) problem in 3D. It constitutes a full solution pipeline from partial observations of input objects via RGBD sensing and recognition to final box placement, via robotic motion planning, to arrive at a compact packing in a target container. The technical core of our method is a neural network for TAP, trained via reinforcement learning (RL), to solve the NP-hard combinatorial optimization problem. Our network simultaneously selects an object to pack and determines the final packing location, based on a judicious encoding of the continuously evolving states of partially observed source objects and available spaces in the target container, using separate encoders both enabled with attention mechanisms. The encoded feature vectors are employed to compute the matching scores and feasibility masks of different pairings of box selection and available space configuration for packing strategy optimization. Extensive experiments, including ablation studies and physical packing execution by a real robot (Universal Robot UR5e), are conducted to evaluate our method in terms of its design choices, scalability, generalizability, and comparisons to baselines, including the most recent RL-based TAP solution. We also contribute the first benchmark for TAP which covers a variety of input settings and difficulty levels.


NIFT: Neural Interaction Field and Template for Object Manipulation

arXiv.org Artificial Intelligence

We introduce NIFT, Neural Interaction Field and Template, a descriptive and robust interaction representation of object manipulations to facilitate imitation learning. Given a few object manipulation demos, NIFT guides the generation of the interaction imitation for a new object instance by matching the Neural Interaction Template (NIT) extracted from the demos in the target Neural Interaction Field (NIF) defined for the new object. Specifically, the NIF is a neural field that encodes the relationship between each spatial point and a given object, where the relative position is defined by a spherical distance function rather than occupancies or signed distances, which are commonly adopted by conventional neural fields but less informative. For a given demo interaction, the corresponding NIT is defined by a set of spatial points sampled in the demo NIF with associated neural features. To better capture the interaction, the points are sampled on the Interaction Bisector Surface (IBS), which consists of points that are equidistant to the two interacting objects and has been used extensively for interaction representation. With both point selection and pointwise features defined for better interaction encoding, NIT effectively guides the feature matching in the NIFs of the new object instances such that the relative poses are optimized to realize the manipulation while imitating the demo interactions. Experiments show that our NIFT solution outperforms state-of-the-art imitation learning methods for object manipulation and generalizes better to objects from new categories.