Xu, Jingyi
CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation
Yan, Kaiwen, Guo, Hongcheng, Shi, Xuanqing, Xu, Jingyi, Gu, Yaonan, Li, Zhoujun
With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.
Enhancing Compositional Text-to-Image Generation with Reliable Random Seeds
Li, Shuangqi, Le, Hieu, Xu, Jingyi, Salzmann, Mathieu
Text-to-image diffusion models have demonstrated remarkable capability in generating realistic images from arbitrary text prompts. However, they often produce inconsistent results for compositional prompts such as "two dogs" or "a penguin on the right of a bowl". Understanding these inconsistencies is crucial for reliable image generation. In this paper, we highlight the significant role of initial noise in these inconsistencies, where certain noise patterns are more reliable for compositional prompts than others. Our analyses reveal that different initial random seeds tend to guide the model to place objects in distinct image areas, potentially adhering to specific patterns of camera angles and image composition associated with the seed. To improve the model's compositional ability, we propose a method for mining these reliable cases, resulting in a curated training set of generated images without requiring any manual annotation. By fine-tuning text-to-image models on these generated images, we significantly enhance their compositional capabilities. For numerical composition, we observe relative increases of 29.3% and 19.5% for Stable Diffusion and PixArt-{\alpha}, respectively. Spatial composition sees even larger gains, with 60.7% for Stable Diffusion and 21.1% for PixArt-{\alpha}.
SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting
Xu, Jingyi, Luo, Yeqi, Yang, Weidong, Liu, Keyi, Wang, Shengnan, Fei, Ben, Bai, Lei
Arctic sea ice performs a vital role in global climate and has paramount impacts on both polar ecosystems and coastal communities. In the last few years, multiple deep learning based pan-Arctic sea ice concentration (SIC) forecasting methods have emerged and showcased superior performance over physics-based dynamical models. However, previous methods forecast SIC at a fixed temporal granularity, e.g. sub-seasonal or seasonal, thus only leveraging inter-granularity information and overlooking the plentiful inter-granularity correlations. SIC at various temporal granularities exhibits cumulative effects and are naturally consistent, with short-term fluctuations potentially impacting long-term trends and long-term trends provides effective hints for facilitating short-term forecasts in Arctic sea ice. Therefore, in this study, we propose to cultivate temporal multi-granularity that naturally derived from Arctic sea ice reanalysis data and provide a unified perspective for modeling SIC via our Sea Ice Foundation Model. SIFM is delicately designed to leverage both intra-granularity and inter-granularity information for capturing granularity-consistent representations that promote forecasting skills. Our extensive experiments show that SIFM outperforms off-the-shelf deep learning models for their specific temporal granularity.
IceDiff: High Resolution and High-Quality Sea Ice Forecasting with Generative Diffusion Prior
Xu, Jingyi, Tu, Siwei, Yang, Weidong, Li, Shuhao, Liu, Keyi, Luo, Yeqi, Ma, Lipeng, Fei, Ben, Bai, Lei
Variation of Arctic sea ice has significant impacts on polar ecosystems, transporting routes, coastal communities, and global climate. Tracing the change of sea ice at a finer scale is paramount for both operational applications and scientific studies. Recent pan-Arctic sea ice forecasting methods that leverage advances in artificial intelligence has made promising progress over numerical models. However, forecasting sea ice at higher resolutions is still under-explored. To bridge the gap, we propose a two-staged deep learning framework, IceDiff, to forecast sea ice concentration at finer scales. IceDiff first leverages an independently trained vision transformer to generate coarse yet superior forecasting over previous methods at a regular 25km x 25km grid. This high-quality sea ice forecasting can be utilized as reliable guidance for the next stage. Subsequently, an unconditional diffusion model pre-trained on sea ice concentration maps is utilized for sampling down-scaled sea ice forecasting via a zero-shot guided sampling strategy and a patch-based method. For the first time, IceDiff demonstrates sea ice forecasting with the 6.25km x 6.25km resolution. IceDiff extends the boundary of existing sea ice forecasting models and more importantly, its capability to generate high-resolution sea ice concentration data is vital for pragmatic usages and research.
Learning Frame-Wise Emotion Intensity for Audio-Driven Talking-Head Generation
Xu, Jingyi, Le, Hieu, Shu, Zhixin, Wang, Yang, Tsai, Yi-Hsuan, Samaras, Dimitris
Human emotional expression is inherently dynamic, complex, and fluid, characterized by smooth transitions in intensity throughout verbal communication. However, the modeling of such intensity fluctuations has been largely overlooked by previous audio-driven talking-head generation methods, which often results in static emotional outputs. In this paper, we explore how emotion intensity fluctuates during speech, proposing a method for capturing and generating these subtle shifts for talking-head generation. Specifically, we develop a talking-head framework that is capable of generating a variety of emotions with precise control over intensity levels. This is achieved by learning a continuous emotion latent space, where emotion types are encoded within latent orientations and emotion intensity is reflected in latent norms. In addition, to capture the dynamic intensity fluctuations, we adopt an audio-to-intensity predictor by considering the speaking tone that reflects the intensity. The training signals for this predictor are obtained through our emotion-agnostic intensity pseudo-labeling method without the need of frame-wise intensity labeling. Extensive experiments and analyses validate the effectiveness of our proposed method in accurately capturing and reproducing emotion intensity fluctuations in talking-head generation, thereby significantly enhancing the expressiveness and realism of the generated outputs.
Lightening Anything in Medical Images
Fei, Ben, Li, Yixuan, Yang, Weidong, Gao, Hengjun, Xu, Jingyi, Ma, Lipeng, Yang, Yatian, Zhou, Pinghong
The development of medical imaging techniques has made a significant contribution to clinical decision-making. However, the existence of suboptimal imaging quality, as indicated by irregular illumination or imbalanced intensity, presents significant obstacles in automating disease screening, analysis, and diagnosis. Existing approaches for natural image enhancement are mostly trained with numerous paired images, presenting challenges in data collection and training costs, all while lacking the ability to generalize effectively. Here, we introduce a pioneering training-free Diffusion Model for Universal Medical Image Enhancement, named UniMIE. UniMIE demonstrates its unsupervised enhancement capabilities across various medical image modalities without the need for any fine-tuning. It accomplishes this by relying solely on a single pre-trained model from ImageNet. We conduct a comprehensive evaluation on 13 imaging modalities and over 15 medical types, demonstrating better qualities, robustness, and accuracy than other modality-specific and data-inefficient models. By delivering high-quality enhancement and corresponding accuracy downstream tasks across a wide range of tasks, UniMIE exhibits considerable potential to accelerate the advancement of diagnostic tools and customized treatment plans.
MFA-Net: Multi-Scale feature fusion attention network for liver tumor segmentation
Yuan, Yanli, Wang, Bingbing, Zhang, Chuan, Xu, Jingyi, Liu, Ximeng, Zhu, Liehuang
Segmentation of organs of interest in medical CT images is beneficial for diagnosis of diseases. Though recent methods based on Fully Convolutional Neural Networks (F-CNNs) have shown success in many segmentation tasks, fusing features from images with different scales is still a challenge: (1) Due to the lack of spatial awareness, F-CNNs share the same weights at different spatial locations. (2) F-CNNs can only obtain surrounding information through local receptive fields. To address the above challenge, we propose a new segmentation framework based on attention mechanisms, named MFA-Net (Multi-Scale Feature Fusion Attention Network). The proposed framework can learn more meaningful feature maps among multiple scales and result in more accurate automatic segmentation. We compare our proposed MFA-Net with SOTA methods on two 2D liver CT datasets. The experimental results show that our MFA-Net produces more precise segmentation on images with different scales.
Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline
Li, Shuhao, Cui, Yue, Xu, Jingyi, Li, Libin, Meng, Lingkai, Yang, Weidong, Zhang, Fan, Zhou, Xiaofang
Traffic prediction has long been a focal and pivotal area in research, witnessing both significant strides from city-level to road-level predictions in recent years. With the advancement of Vehicle-to-Everything (V2X) technologies, autonomous driving, and large-scale models in the traffic domain, lane-level traffic prediction has emerged as an indispensable direction. However, further progress in this field is hindered by the absence of comprehensive and unified evaluation standards, coupled with limited public availability of data and code. This paper extensively analyzes and categorizes existing research in lane-level traffic prediction, establishes a unified spatial topology structure and prediction tasks, and introduces a simple baseline model, GraphMLP, based on graph structure and MLP networks. We have replicated codes not publicly available in existing studies and, based on this, thoroughly and fairly assessed various models in terms of effectiveness, efficiency, and applicability, providing insights for practical applications. Additionally, we have released three new datasets and corresponding codes to accelerate progress in this field, all of which can be found on https://github.com/ShuhaoLii/TITS24LaneLevel-Traffic-Benchmark.
Explicit Interaction for Fusion-Based Place Recognition
Xu, Jingyi, Ma, Junyi, Wu, Qi, Zhou, Zijie, Wang, Yue, Chen, Xieyuanli, Pei, Ling
Fusion-based place recognition is an emerging technique jointly utilizing multi-modal perception data, to recognize previously visited places in GPS-denied scenarios for robots and autonomous vehicles. Recent fusion-based place recognition methods combine multi-modal features in implicit manners. While achieving remarkable results, they do not explicitly consider what the individual modality affords in the fusion system. Therefore, the benefit of multi-modal feature fusion may not be fully explored. In this paper, we propose a novel fusion-based network, dubbed EINet, to achieve explicit interaction of the two modalities. EINet uses LiDAR ranges to supervise more robust vision features for long time spans, and simultaneously uses camera RGB data to improve the discrimination of LiDAR point clouds. In addition, we develop a new benchmark for the place recognition task based on the nuScenes dataset. To establish this benchmark for future research with comprehensive comparisons, we introduce both supervised and self-supervised training schemes alongside evaluation protocols. We conduct extensive experiments on the proposed benchmark, and the experimental results show that our EINet exhibits better recognition performance as well as solid generalization ability compared to the state-of-the-art fusion-based place recognition approaches. Our open-source code and benchmark are released at: https://github.com/BIT-XJY/EINet.
LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for Place Recognition
Zhou, Zijie, Xu, Jingyi, Xiong, Guangming, Ma, Junyi
Place recognition is one of the most crucial modules for autonomous vehicles to identify places that were previously visited in GPS-invalid environments. Sensor fusion is considered an effective method to overcome the weaknesses of individual sensors. In recent years, multimodal place recognition fusing information from multiple sensors has gathered increasing attention. However, most existing multimodal place recognition methods only use limited field-of-view camera images, which leads to an imbalance between features from different modalities and limits the effectiveness of sensor fusion. In this paper, we present a novel neural network named LCPR for robust multimodal place recognition, which fuses LiDAR point clouds with multi-view RGB images to generate discriminative and yaw-rotation invariant representations of the environment. A multi-scale attention-based fusion module is proposed to fully exploit the panoramic views from different modalities of the environment and their correlations. We evaluate our method on the nuScenes dataset, and the experimental results show that our method can effectively utilize multi-view camera and LiDAR data to improve the place recognition performance while maintaining strong robustness to viewpoint changes. Our open-source code and pre-trained models are available at https://github.com/ZhouZijie77/LCPR .