Goto

Collaborating Authors

 Xu, Ji


Adversarial multi-task underwater acoustic target recognition: towards robustness against various influential factors

arXiv.org Artificial Intelligence

Underwater acoustic target recognition based on passive sonar faces numerous challenges in practical maritime applications. One of the main challenges lies in the susceptibility of signal characteristics to diverse environmental conditions and data acquisition configurations, which can lead to instability in recognition systems. While significant efforts have been dedicated to addressing these influential factors in other domains of underwater acoustics, they are often neglected in the field of underwater acoustic target recognition. To overcome this limitation, this study designs auxiliary tasks that model influential factors (e.g., source range, water column depth, or wind speed) based on available annotations and adopts a multi-task framework to connect these factors to the recognition task. Furthermore, we integrate an adversarial learning mechanism into the multi-task framework to prompt the model to extract representations that are robust against influential factors. Through extensive experiments and analyses on the ShipsEar dataset, our proposed adversarial multi-task model demonstrates its capacity to effectively model the influential factors and achieve state-of-the-art performance on the 12-class recognition task.


Advancing Robust Underwater Acoustic Target Recognition through Multi-task Learning and Multi-Gate Mixture-of-Experts

arXiv.org Artificial Intelligence

Underwater acoustic target recognition has emerged as a prominent research area within the field of underwater acoustics. However, the current availability of authentic underwater acoustic signal recordings remains limited, which hinders data-driven acoustic recognition models from learning robust patterns of targets from a limited set of intricate underwater signals, thereby compromising their stability in practical applications. To overcome these limitations, this study proposes a recognition framework called M3 (Multi-task, Multi-gate, Multi-expert) to enhance the model's ability to capture robust patterns by making it aware of the inherent properties of targets. In this framework, an auxiliary task that focuses on target properties, such as estimating target size, is designed. The auxiliary task then shares parameters with the recognition task to realize multi-task learning. This paradigm allows the model to concentrate on shared information across tasks and identify robust patterns of targets in a regularized manner, thereby enhancing the model's generalization ability. Moreover, M3 incorporates multi-expert and multi-gate mechanisms, allowing for the allocation of distinct parameter spaces to various underwater signals. This enables the model to process intricate signal patterns in a fine-grained and differentiated manner. To evaluate the effectiveness of M3, extensive experiments were implemented on the ShipsEar underwater ship-radiated noise dataset. The results substantiate that M3 has the ability to outperform the most advanced single-task recognition models, thereby achieving the state-of-the-art performance.


DEMONet: Underwater Acoustic Target Recognition based on Multi-Expert Network and Cross-Temporal Variational Autoencoder

arXiv.org Artificial Intelligence

Building a robust underwater acoustic recognition system in real-world scenarios is challenging due to the complex underwater environment and the dynamic motion states of targets. A promising optimization approach is to leverage the intrinsic physical characteristics of targets, which remain invariable regardless of environmental conditions, to provide robust insights. However, our study reveals that while physical characteristics exhibit robust properties, they may lack class-specific discriminative patterns. Consequently, directly incorporating physical characteristics into model training can potentially introduce unintended inductive biases, leading to performance degradation. To utilize the benefits of physical characteristics while mitigating possible detrimental effects, we propose DEMONet in this study, which utilizes the detection of envelope modulation on noise (DEMON) to provide robust insights into the shaft frequency or blade counts of targets. DEMONet is a multi-expert network that allocates various underwater signals to their best-matched expert layer based on DEMON spectra for fine-grained signal processing. Thereinto, DEMON spectra are solely responsible for providing implicit physical characteristics without establishing a mapping relationship with the target category. Furthermore, to mitigate noise and spurious modulation spectra in DEMON features, we introduce a cross-temporal alignment strategy and employ a variational autoencoder (VAE) to reconstruct noise-resistant DEMON spectra to replace the raw DEMON features. The effectiveness of the proposed DEMONet with cross-temporal VAE was primarily evaluated on the DeepShip dataset and our proprietary datasets. Experimental results demonstrated that our approach could achieve state-of-the-art performance on both datasets.


Faithful Density-Peaks Clustering via Matrix Computations on MPI Parallelization System

arXiv.org Artificial Intelligence

Density peaks clustering (DP) has the ability of detecting clusters of arbitrary shape and clustering non-Euclidean space data, but its quadratic complexity in both computing and storage makes it difficult to scale for big data. Various approaches have been proposed in this regard, including MapReduce based distribution computing, multi-core parallelism, presentation transformation (e.g., kd-tree, Z-value), granular computing, and so forth. However, most of these existing methods face two limitations. One is their target datasets are mostly constrained to be in Euclidian space, the other is they emphasize only on local neighbors while ignoring global data distribution due to restriction to cut-off kernel when computing density. To address the two issues, we present a faithful and parallel DP method that makes use of two types of vector-like distance matrices and an inverse leading-node-finding policy. The method is implemented on a message passing interface (MPI) system. Extensive experiments showed that our method is capable of clustering non-Euclidean data such as in community detection, while outperforming the state-of-the-art counterpart methods in accuracy when clustering large Euclidean data. Our code is publicly available at https://github.com/alanxuji/FaithPDP.


Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss

arXiv.org Artificial Intelligence

Long-tailed (LT) classification is an unavoidable and challenging problem in the real world. Most existing long-tailed classification methods focus only on solving the class-wise imbalance while ignoring the attribute-wise imbalance. The deviation of a classification model is caused by both class-wise and attribute-wise imbalance. Due to the fact that attributes are implicit in most datasets and the combination of attributes is complex, attribute-wise imbalance is more difficult to handle. For this purpose, we proposed a novel long-tailed classification framework, aiming to build a multi-granularity classification model by means of invariant feature learning. This method first unsupervisedly constructs Coarse-Grained forest (CLF) to better characterize the distribution of attributes within a class. Depending on the distribution of attributes, one can customize suitable sampling strategies to construct different imbalanced datasets. We then introduce multi-center loss (MCL) that aims to gradually eliminate confusing attributes during feature learning process. The proposed framework does not necessarily couple to a specific LT classification model structure and can be integrated with any existing LT method as an independent component. Extensive experiments show that our approach achieves state-of-the-art performance on both existing benchmarks ImageNet-GLT and MSCOCO-GLT and can improve the performance of existing LT methods. Our codes are available on GitHub: \url{https://github.com/jinyery/cognisance}


Towards Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems

arXiv.org Artificial Intelligence

We consider an inverse problem $\mathbf{y}= f(\mathbf{Ax})$, where $\mathbf{x}\in\mathbb{R}^n$ is the signal of interest, $\mathbf{A}$ is the sensing matrix, $f$ is a nonlinear function and $\mathbf{y} \in \mathbb{R}^m$ is the measurement vector. In many applications, we have some level of freedom to design the sensing matrix $\mathbf{A}$, and in such circumstances we could optimize $\mathbf{A}$ to achieve better reconstruction performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on the difficulty of recovering $\mathbf{x}$ from $\mathbf{y}$. In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation propagation (EP) algorithm. We define a notion of spikiness for the spectrum of $\bmmathbfA}$ and show the importance of this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery performance depends on $f$. Based on our framework, we are able to show that, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead to better performance. Our results unify and substantially generalize existing results that compare Gaussian and orthogonal matrices, and provide a platform towards designing optimal sensing systems.


Underwater Acoustic Target Recognition based on Smoothness-inducing Regularization and Spectrogram-based Data Augmentation

arXiv.org Artificial Intelligence

Underwater acoustic target recognition is a challenging task owing to the intricate underwater environments and limited data availability. Insufficient data can hinder the ability of recognition systems to support complex modeling, thus impeding their advancement. To improve the generalization capacity of recognition models, techniques such as data augmentation have been employed to simulate underwater signals and diversify data distribution. However, the complexity of underwater environments can cause the simulated signals to deviate from real scenarios, resulting in biased models that are misguided by non-true data. In this study, we propose two strategies to enhance the generalization ability of models in the case of limited data while avoiding the risk of performance degradation. First, as an alternative to traditional data augmentation, we utilize smoothness-inducing regularization, which only incorporates simulated signals in the regularization term. Additionally, we propose a specialized spectrogram-based data augmentation strategy, namely local masking and replicating (LMR), to capture inter-class relationships. Our experiments and visualization analysis demonstrate the superiority of our proposed strategies.


Underwater-Art: Expanding Information Perspectives With Text Templates For Underwater Acoustic Target Recognition

arXiv.org Artificial Intelligence

Underwater acoustic target recognition is an intractable task due to the complex acoustic source characteristics and sound propagation patterns. Limited by insufficient data and narrow information perspective, recognition models based on deep learning seem far from satisfactory in practical underwater scenarios. Although underwater acoustic signals are severely influenced by distance, channel depth, or other factors, annotations of relevant information are often non-uniform, incomplete, and hard to use. In our work, we propose to implement Underwater Acoustic Recognition based on Templates made up of rich relevant information (hereinafter called "UART"). We design templates to integrate relevant information from different perspectives into descriptive natural language. UART adopts an audio-spectrogram-text tri-modal contrastive learning framework, which endows UART with the ability to guide the learning of acoustic representations by descriptive natural language. Our experiments reveal that UART has better recognition capability and generalization performance than traditional paradigms. Furthermore, the pre-trained UART model could provide superior prior knowledge for the recognition model in the scenario without any auxiliary annotation.


Adaptive ship-radiated noise recognition with learnable fine-grained wavelet transform

arXiv.org Artificial Intelligence

Analyzing the ocean acoustic environment is a tricky task. Background noise and variable channel transmission environment make it complicated to implement accurate ship-radiated noise recognition. Existing recognition systems are weak in addressing the variable underwater environment, thus leading to disappointing performance in practical application. In order to keep the recognition system robust in various underwater environments, this work proposes an adaptive generalized recognition system - AGNet (Adaptive Generalized Network). By converting fixed wavelet parameters into fine-grained learnable parameters, AGNet learns the characteristics of underwater sound at different frequencies. Its flexible and fine-grained design is conducive to capturing more background acoustic information (e.g., background noise, underwater transmission channel). To utilize the implicit information in wavelet spectrograms, AGNet adopts the convolutional neural network with parallel convolution attention modules as the classifier. Experiments reveal that our AGNet outperforms all baseline methods on several underwater acoustic datasets, and AGNet could benefit more from transfer learning. Moreover, AGNet shows robust performance against various interference factors.


Advancing underwater acoustic target recognition via adaptive data pruning and smoothness-inducing regularization

arXiv.org Artificial Intelligence

Underwater acoustic recognition for ship-radiated signals has high practical application value due to the ability to recognize non-line-of-sight targets. However, due to the difficulty of data acquisition, the collected signals are scarce in quantity and mainly composed of mechanical periodic noise. According to the experiments, we observe that the repeatability of periodic signals leads to a double-descent phenomenon, which indicates a significant local bias toward repeated samples. To address this issue, we propose a strategy based on cross-entropy to prune excessively similar segments in training data. Furthermore, to compensate for the reduction of training data, we generate noisy samples and apply smoothness-inducing regularization based on KL divergence to mitigate overfitting. Experiments show that our proposed data pruning and regularization strategy can bring stable benefits and our framework significantly outperforms the state-of-the-art in low-resource scenarios.