Plotting

 Xu, Huazhe


Scaling Laws in Scientific Discovery with AI and Robot Scientists

arXiv.org Artificial Intelligence

Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.


DemoGen: Synthetic Demonstration Generation for Data-Efficient Visuomotor Policy Learning

arXiv.org Artificial Intelligence

Visuomotor policies have shown great promise in robotic manipulation but often require substantial amounts of human-collected data for effective performance. A key reason underlying the data demands is their limited spatial generalization capability, which necessitates extensive data collection across different object configurations. In this work, we present DemoGen, a low-cost, fully synthetic approach for automatic demonstration generation. Using only one human-collected demonstration per task, DemoGen generates spatially augmented demonstrations by adapting the demonstrated action trajectory to novel object configurations. Visual observations are synthesized by leveraging 3D point clouds as the modality and rearranging the subjects in the scene via 3D editing. Empirically, DemoGen significantly enhances policy performance across a diverse range of real-world manipulation tasks, showing its applicability even in challenging scenarios involving deformable objects, dexterous hand end-effectors, and bimanual platforms. Furthermore, DemoGen can be extended to enable additional out-of-distribution capabilities, including disturbance resistance and obstacle avoidance.


Fine-Tuning Hard-to-Simulate Objectives for Quadruped Locomotion: A Case Study on Total Power Saving

arXiv.org Artificial Intelligence

Legged locomotion is not just about mobility; it also encompasses crucial objectives such as energy efficiency, safety, and user experience, which are vital for real-world applications. However, key factors such as battery power consumption and stepping noise are often inaccurately modeled or missing in common simulators, leaving these aspects poorly optimized or unaddressed by current sim-to-real methods. Hand-designed proxies, such as mechanical power and foot contact forces, have been used to address these challenges but are often problem-specific and inaccurate. In this paper, we propose a data-driven framework for fine-tuning locomotion policies, targeting these hard-to-simulate objectives. Our framework leverages real-world data to model these objectives and incorporates the learned model into simulation for policy improvement. We demonstrate the effectiveness of our framework on power saving for quadruped locomotion, achieving a significant 24-28\% net reduction in total power consumption from the battery pack at various speeds. In essence, our approach offers a versatile solution for optimizing hard-to-simulate objectives in quadruped locomotion, providing an easy-to-adapt paradigm for continual improving with real-world knowledge. Project page https://hard-to-sim.github.io/.


DOGlove: Dexterous Manipulation with a Low-Cost Open-Source Haptic Force Feedback Glove

arXiv.org Artificial Intelligence

Dexterous hand teleoperation plays a pivotal role in enabling robots to achieve human-level manipulation dexterity. However, current teleoperation systems often rely on expensive equipment and lack multi-modal sensory feedback, restricting human operators' ability to perceive object properties and perform complex manipulation tasks. To address these limitations, we present DOGlove, a low-cost, precise, and haptic force feedback glove system for teleoperation and manipulation. DoGlove can be assembled in hours at a cost under 600 USD. It features a customized joint structure for 21-DoF motion capture, a compact cable-driven torque transmission mechanism for 5-DoF multidirectional force feedback, and a linear resonate actuator for 5-DoF fingertip haptic feedback. Leveraging action and haptic force retargeting, DOGlove enables precise and immersive teleoperation of dexterous robotic hands, achieving high success rates in complex, contact-rich tasks. We further evaluate DOGlove in scenarios without visual feedback, demonstrating the critical role of haptic force feedback in task performance. In addition, we utilize the collected demonstrations to train imitation learning policies, highlighting the potential and effectiveness of DOGlove. DOGlove's hardware and software system will be fully open-sourced at https://do-glove.github.io/.


DenseMatcher: Learning 3D Semantic Correspondence for Category-Level Manipulation from a Single Demo

arXiv.org Artificial Intelligence

Circles represent the contact points in the human demo / grasping points for robot manipulation. Dense 3D correspondence can enhance robotic manipulation by enabling the generalization of spatial, functional, and dynamic information from one object to an unseen counterpart. Compared to shape correspondence, semantic correspondence is more effective in generalizing across different object categories. DenseMatcher first computes vertex features by projecting multiview 2D features onto meshes and refining them with a 3D network, and subsequently finds dense correspondences with the obtained features using functional map. In addition, we craft the first 3D matching dataset that contains colored object meshes across diverse categories. In our experiments, we show that DenseMatcher significantly outperforms prior 3D matching baselines by 43.5%. We demonstrate the downstream effectiveness of DenseMatcher in (i) robotic manipulation, where it achieves crossinstance and cross-category generalization on long-horizon complex manipulation tasks from observing only one demo; (ii) zero-shot color mapping between digital assets, where appearance can be transferred between different objects with relatable geometry. Correspondence plays a pivotal role in robotics Wang (2019). For instance, in robotic assembly, it is necessary to determine the corresponding parts between the target and source objects.


Stem-OB: Generalizable Visual Imitation Learning with Stem-Like Convergent Observation through Diffusion Inversion

arXiv.org Artificial Intelligence

Figure 1: Left: The tree of Stem-OB inversion is composed of different objects progressively inverted through a diffusion inversion process. Moving downward alone the tree's branches, objects of different textures, appearances, and categories gradually get closer, eventually converging into the same root of Gaussian noise, where they are completely indistinguishable. Visual imitation learning methods demonstrate strong performance, yet they lack generalization when faced with visual input perturbations like variations in lighting and textures. This limitation hampers their practical application in real-world settings. To address this, we propose Stem-OB that leverages the inversion process of pretrained image diffusion models to suppress low-level visual differences while maintaining high-level scene structures. This image inversion process is akin to transforming the observation into a shared representation, from which other observations also stem. Stem-OB offers a simple yet effective plug-and-play solution that stands in contrast to data augmentation approaches. It demonstrates robustness to various unspecified appearance changes without the need for additional training. We provide theoretical insights and empirical results that validate the efficacy of our approach in simulated and real settings. Stem-OB shows an exceptionally significant improvement in real-world robotic tasks, where challenging light and appearance changes are present, with an average increase of 22.2% in success rates compared to the best baseline. See our website for more info. Despite the versatility demonstrated by visual IL, learned policies are often brittle and fail to generalize to unseen environments, even minor perturbations such as altering lighting conditions or changing the texture of the object may lead to failure of the learned policy (Xie et al., 2023; Yuan et al., 2024b).


Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets

arXiv.org Artificial Intelligence

The pre-training of visual representations has enhanced the efficiency of robot learning. Due to the lack of large-scale in-domain robotic datasets, prior works utilize in-the-wild human videos to pre-train robotic visual representation. Despite their promising results, representations from human videos are inevitably subject to distribution shifts and lack the dynamics information crucial for task completion. We first evaluate various pre-trained representations in terms of their correlation to the downstream robotic manipulation tasks (i.e., manipulation centricity). Interestingly, we find that the "manipulation centricity" is a strong indicator of success rates when applied to downstream tasks. Drawing from these findings, we propose Manipulation Centric Representation (MCR), a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks to improve manipulation centricity. Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions. We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss. Empirical results across 4 simulation domains with 20 tasks verify that MCR outperforms the strongest baseline method by 14.8%. Moreover, MCR boosts the performance of data-efficient learning with a UR5e arm on 3 real-world tasks by 76.9%. Project website: https://robots-pretrain-robots.github.io/.


MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning

arXiv.org Artificial Intelligence

Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone, enhancing the agent's ability to handle complex tasks by leveraging modular expert learning to avoid gradient conflicts. Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which heuristically samples perturbation candidates containing task-relevant information, leading to more targeted and effective optimization. MENTOR outperforms stateof-the-art methods across three simulation domains--DeepMind Control Suite, Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks including Peg Insertion, Cable Routing, and Tabletop Golf, which significantly surpasses the success rate of 32% from the current strongest model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at mentor. Figure 1: MENTOR is validated in real-world tasks. We design three challenging robotic learning tasks for the agent to acquire skills through real-world visual reinforcement learning. MENTOR achieves the most efficient and robust policies compared to the baselines. Despite substantial progress in this field (Kostrikov et al., 2020; Yarats et al., 2021; Schwarzer et al., 2020; Stooke et al., 2021; Laskin et al., 2020a), these methods still suffer from low sample efficiency.


DTactive: A Vision-Based Tactile Sensor with Active Surface

arXiv.org Artificial Intelligence

The development of vision-based tactile sensors has significantly enhanced robots' perception and manipulation capabilities, especially for tasks requiring contact-rich interactions with objects. In this work, we present DTactive, a novel vision-based tactile sensor with active surfaces. DTactive inherits and modifies the tactile 3D shape reconstruction method of DTact while integrating a mechanical transmission mechanism that facilitates the mobility of its surface. Thanks to this design, the sensor is capable of simultaneously performing tactile perception and in-hand manipulation with surface movement. Leveraging the high-resolution tactile images from the sensor and the magnetic encoder data from the transmission mechanism, we propose a learning-based method to enable precise angular trajectory control during in-hand manipulation. In our experiments, we successfully achieved accurate rolling manipulation within the range of [ -180{\deg},180{\deg} ] on various objects, with the root mean square error between the desired and actual angular trajectories being less than 12{\deg} on nine trained objects and less than 19{\deg} on three novel objects. The results demonstrate the potential of DTactive for in-hand object manipulation in terms of effectiveness, robustness and precision.


On the Evaluation of Generative Robotic Simulations

arXiv.org Artificial Intelligence

Due to the difficulty of acquiring extensive real-world data, robot simulation has become crucial for parallel training and sim-to-real transfer, highlighting the importance of scalable simulated robotic tasks. Foundation models have demonstrated impressive capacities in autonomously generating feasible robotic tasks. However, this new paradigm underscores the challenge of adequately evaluating these autonomously generated tasks. To address this, we propose a comprehensive evaluation framework tailored to generative simulations. For single-task quality, we evaluate the realism of the generated task and the completeness of the generated trajectories using large language models and vision-language models. In terms of diversity, we measure both task and data diversity through text similarity of task descriptions and world model loss trained on collected task trajectories. For task-level generalization, we assess the zero-shot generalization ability on unseen tasks of a policy trained with multiple generated tasks. Experiments conducted on three representative task generation pipelines demonstrate that the results from our framework are highly consistent with human evaluations, confirming the feasibility and validity of our approach. The findings reveal that while metrics of quality and diversity can be achieved through certain methods, no single approach excels across all metrics, suggesting a need for greater focus on balancing these different metrics. Additionally, our analysis further highlights the common challenge of low generalization capability faced by current works. Embodied artificial intelligence (EAI) is crucial to enable intelligent agents to understand and interact with the physical world.