Xu, Haoyu
Efficient and Effective Prompt Tuning via Prompt Decomposition and Compressed Outer Product
Lan, Pengxiang, Xu, Haoyu, Yang, Enneng, Liang, Yuliang, Guo, Guibing, Zhao, Jianzhe, Wang, Xingwei
Prompt tuning (PT) offers a cost-effective alternative to fine-tuning large-scale pre-trained language models (PLMs), requiring only a few parameters in soft prompt tokens added before the input text. However, existing PT approaches face two significant issues: (i) They overlook intrinsic semantic associations between soft prompt tokens, leading to high discreteness and limited interactions, thus reducing the model's comprehension and effectiveness in complex tasks. (ii) Due to the complexity of downstream tasks, long soft prompt is necessitated to improve performance, but prompt length correlates positively with memory usage and computational costs. Achieving high efficiency and performance remains an ongoing challenge. To address these issues, we propose a novel Low-parameters prompt tuning (LAMP) method, which leverages prompt decomposition and compressed outer product. Specifically, the prompt decomposition module employs Truncated SVD to reduce training parameters and significantly lower the dimensionality of the soft prompt parameter space. It then utilizes a compressed outer product module to facilitate multiple interactions among prompt tokens, exploring their intrinsic associations to enhance knowledge representation. Finally, LAMP uses average pooling to reduce memory usage and training/inference time. Extensive experiments across six architectures and eight datasets demonstrate that LAMP outperforms state-of-the-art PT-based and LoRA-based methods in performance and efficiency.
Exploiting the Index Gradients for Optimization-Based Jailbreaking on Large Language Models
Li, Jiahui, Hao, Yongchang, Xu, Haoyu, Wang, Xing, Hong, Yu
Despite the advancements in training Large Language Models (LLMs) with alignment techniques to enhance the safety of generated content, these models remain susceptible to jailbreak, an adversarial attack method that exposes security vulnerabilities in LLMs. Notably, the Greedy Coordinate Gradient (GCG) method has demonstrated the ability to automatically generate adversarial suffixes that jailbreak state-of-the-art LLMs. However, the optimization process involved in GCG is highly time-consuming, rendering the jailbreaking pipeline inefficient. In this paper, we investigate the process of GCG and identify an issue of Indirect Effect, the key bottleneck of the GCG optimization. To this end, we propose the Model Attack Gradient Index GCG (MAGIC), that addresses the Indirect Effect by exploiting the gradient information of the suffix tokens, thereby accelerating the procedure by having less computation and fewer iterations. Our experiments on AdvBench show that MAGIC achieves up to a 1.5x speedup, while maintaining Attack Success Rates (ASR) on par or even higher than other baselines. Our MAGIC achieved an ASR of 74% on the Llama-2 and an ASR of 54% when conducting transfer attacks on GPT-3.5. Code is available at https://github.com/jiah-li/magic.