Goto

Collaborating Authors

 Xu, Guanghui


Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent

arXiv.org Artificial Intelligence

In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large


How to Train Your Agent to Read and Write

arXiv.org Artificial Intelligence

Reading and writing research papers is one of the most privileged abilities that a qualified researcher should master. However, it is difficult for new researchers (\eg{students}) to fully {grasp} this ability. It would be fascinating if we could train an intelligent agent to help people read and summarize papers, and perhaps even discover and exploit the potential knowledge clues to write novel papers. Although there have been existing works focusing on summarizing (\emph{i.e.}, reading) the knowledge in a given text or generating (\emph{i.e.}, writing) a text based on the given knowledge, the ability of simultaneously reading and writing is still under development. Typically, this requires an agent to fully understand the knowledge from the given text materials and generate correct and fluent novel paragraphs, which is very challenging in practice. In this paper, we propose a Deep ReAder-Writer (DRAW) network, which consists of a \textit{Reader} that can extract knowledge graphs (KGs) from input paragraphs and discover potential knowledge, a graph-to-text \textit{Writer} that generates a novel paragraph, and a \textit{Reviewer} that reviews the generated paragraph from three different aspects. Extensive experiments show that our DRAW network outperforms considered baselines and several state-of-the-art methods on AGENDA and M-AGENDA datasets. Our code and supplementary are released at https://github.com/menggehe/DRAW.