Xu, Fangli
Ask Questions with Double Hints: Visual Question Generation with Answer-awareness and Region-reference
Shen, Kai, Wu, Lingfei, Tang, Siliang, Xu, Fangli, Long, Bo, Zhuang, Yueting, Pei, Jian
The visual question generation (VQG) task aims to generate human-like questions from an image and potentially other side information (e.g. answer type). Previous works on VQG fall in two aspects: i) They suffer from one image to many questions mapping problem, which leads to the failure of generating referential and meaningful questions from an image. ii) They fail to model complex implicit relations among the visual objects in an image and also overlook potential interactions between the side information and image. To address these limitations, we first propose a novel learning paradigm to generate visual questions with answer-awareness and region-reference. Concretely, we aim to ask the right visual questions with Double Hints - textual answers and visual regions of interests, which could effectively mitigate the existing one-to-many mapping issue. Particularly, we develop a simple methodology to self-learn the visual hints without introducing any additional human annotations. Furthermore, to capture these sophisticated relationships, we propose a new double-hints guided Graph-to-Sequence learning framework, which first models them as a dynamic graph and learns the implicit topology end-to-end, and then utilizes a graph-to-sequence model to generate the questions with double hints. Experimental results demonstrate the priority of our proposed method.
RDF-to-Text Generation with Reinforcement Learning Based Graph-augmented Structural Neural Encoders
Gao, Hanning, Wu, Lingfei, Hu, Po, Wei, Zhihua, Xu, Fangli, Long, Bo
Considering a collection of RDF triples, the RDF-to-text generation task aims to generate a text description. Most previous methods solve this task using a sequence-to-sequence model or using a graph-based model to encode RDF triples and to generate a text sequence. Nevertheless, these approaches fail to clearly model the local and global structural information between and within RDF triples. Moreover, the previous methods also face the non-negligible problem of low faithfulness of the generated text, which seriously affects the overall performance of these models. To solve these problems, we propose a model combining two new graph-augmented structural neural encoders to jointly learn both local and global structural information in the input RDF triples. To further improve text faithfulness, we innovatively introduce a reinforcement learning (RL) reward based on information extraction (IE). We first extract triples from the generated text using a pretrained IE model and regard the correct number of the extracted triples as the additional RL reward. Experimental results on two benchmark datasets demonstrate that our proposed model outperforms the state-of-the-art baselines, and the additional reinforcement learning reward does help to improve the faithfulness of the generated text.
Heterogeneous Global Graph Neural Networks for Personalized Session-based Recommendation
Pang, Yitong, Wu, Lingfei, Shen, Qi, Zhang, Yiming, Wei, Zhihua, Xu, Fangli, Chang, Ethan, Long, Bo
Predicting the next interaction of a short-term interaction session is a challenging task in session-based recommendation. Almost all existing works rely on item transition patterns, and neglect the impact of user historical sessions while modeling user preference, which often leads to non-personalized recommendation. Additionally, existing personalized session-based recommenders capture user preference only based on the sessions of the current user, but ignore the useful item-transition patterns from other user's historical sessions. To address these issues, we propose a novel Heterogeneous Global Graph Neural Networks (HG-GNN) to exploit the item transitions over all sessions in a subtle manner for better inferring user preference from the current and historical sessions. To effectively exploit the item transitions over all sessions from users, we propose a novel heterogeneous global graph that contains item transitions of sessions, user-item interactions and global co-occurrence items. Moreover, to capture user preference from sessions comprehensively, we propose to learn two levels of user representations from the global graph via two graph augmented preference encoders. Specifically, we design a novel heterogeneous graph neural network (HGNN) on the heterogeneous global graph to learn the long-term user preference and item representations with rich semantics. Based on the HGNN, we propose the Current Preference Encoder and the Historical Preference Encoder to capture the different levels of user preference from the current and historical sessions, respectively. To achieve personalized recommendation, we integrate the representations of the user current preference and historical interests to generate the final user preference representation. Extensive experimental results on three real-world datasets show that our model outperforms other state-of-the-art methods.
Deep Graph Matching and Searching for Semantic Code Retrieval
Ling, Xiang, Wu, Lingfei, Wang, Saizhuo, Pan, Gaoning, Ma, Tengfei, Xu, Fangli, Liu, Alex X., Wu, Chunming, Ji, Shouling
Code retrieval is to find the code snippet from a large corpus of source code repositories that highly matches the query of natural language description. Recent work mainly uses natural language processing techniques to process both query texts (i.e., human natural language) and code snippets (i.e., machine programming language), however neglecting the deep structured features of natural language query texts and source codes, both of which contain rich semantic information. In this paper, we propose an end-to-end deep graph matching and searching (DGMS) model based on graph neural networks for semantic code retrieval. To this end, we first represent both natural language query texts and programming language codes with the unified graph-structured data, and then use the proposed graph matching and searching model to retrieve the best matching code snippet. In particular, DGMS not only captures more structural information for individual query texts or code snippets but also learns the fine-grained similarity between them by a cross-attention based semantic matching operation. We evaluate the proposed DGMS model on two public code retrieval datasets from two representative programming languages (i.e., Java and Python). The experiment results demonstrate that DGMS significantly outperforms state-of-the-art baseline models by a large margin on both datasets. Moreover, our extensive ablation studies systematically investigate and illustrate the impact of each part of DGMS.
Graph-to-Tree Neural Networks for Learning Structured Input-Output Translation with Applications to Semantic Parsing and Math Word Problem
Li, Shucheng, Wu, Lingfei, Feng, Shiwei, Xu, Fangli, Xu, Fengyuan, Zhong, Sheng
The celebrated Seq2Seq technique and its numerous variants achieve excellent performance on many tasks such as neural machine translation, semantic parsing, and math word problem solving. However, these models either only consider input objects as sequences while ignoring the important structural information for encoding, or they simply treat output objects as sequence outputs instead of structural objects for decoding. In this paper, we present a novel Graph-to-Tree Neural Networks, namely Graph2Tree consisting of a graph encoder and a hierarchical tree decoder, that encodes an augmented graph-structured input and decodes a tree-structured output. In particular, we investigated our model for solving two problems, neural semantic parsing and math word problem. Our extensive experiments demonstrate that our Graph2Tree model outperforms or matches the performance of other state-of-the-art models on these tasks.
Hierarchical Graph Matching Networks for Deep Graph Similarity Learning
Ling, Xiang, Wu, Lingfei, Wang, Saizhuo, Ma, Tengfei, Xu, Fangli, Liu, Alex X., Wu, Chunming, Ji, Shouling
While the celebrated graph neural networks yield effective representations for individual nodes of a graph, there has been relatively less success in extending to deep graph similarity learning. Recent work has considered either global-level graph-graph interactions or low-level node-node interactions, ignoring the rich cross-level interactions (e.g., between nodes and a whole graph). In this paper, we propose a Hierarchical Graph Matching Network (HGMN) for computing the graph similarity between any pair of graph-structured objects. Our model jointly learns graph representations and a graph matching metric function for computing graph similarities in an end-to-end fashion. The proposed HGMN model consists of a node-graph matching network for effectively learning cross-level interactions between nodes of a graph and a whole graph, and a siamese graph neural network for learning global-level interactions between two graphs. Our comprehensive experiments demonstrate that HGMN consistently outperforms state-of-the-art graph matching network baselines for both classification and regression tasks.
MUTLA: A Large-Scale Dataset for Multimodal Teaching and Learning Analytics
Xu, Fangli, Wu, Lingfei, Thai, KP, Hsu, Carol, Wang, Wei, Tong, Richard
Automatic analysis of teacher and student interactions could be very important to improve the quality of teaching and student engagement. However, despite some recent progress in utilizing multimodal data for teaching and learning analytics, a thorough analysis of a rich multimodal dataset coming for a complex real learning environment has yet to be done. To bridge this gap, we present a large-scale MUlti-modal Teaching and Learning Analytics (MUTLA) dataset. This dataset includes time-synchronized multimodal data records of students (learning logs, videos, EEG brainwaves) as they work in various subjects from Squirrel AI Learning System (SAIL) to solve problems of varying difficulty levels. The dataset resources include user records from the learner records store of SAIL, brainwave data collected by EEG headset devices, and video data captured by web cameras while students worked in the SAIL products. Our hope is that by analyzing real-world student learning activities, facial expressions, and brainwave patterns, researchers can better predict engagement, which can then be used to improve adaptive learning selection and student learning outcomes. An additional goal is to provide a dataset gathered from real-world educational activities versus those from controlled lab environments to benefit the educational learning community.
Word Mover's Embedding: From Word2Vec to Document Embedding
Wu, Lingfei, Yen, Ian E. H., Xu, Kun, Xu, Fangli, Balakrishnan, Avinash, Chen, Pin-Yu, Ravikumar, Pradeep, Witbrock, Michael J.
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called \emph{Word Mover's Distance} (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the \emph{Word Mover's Embedding } (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.
Random Warping Series: A Random Features Method for Time-Series Embedding
Wu, Lingfei, Yen, Ian En-Hsu, Yi, Jinfeng, Xu, Fangli, Lei, Qi, Witbrock, Michael
Time series data analytics has been a problem of substantial interests for decades, and Dynamic Time Warping (DTW) has been the most widely adopted technique to measure dissimilarity between time series. A number of global-alignment kernels have since been proposed in the spirit of DTW to extend its use to kernel-based estimation method such as support vector machine. However, those kernels suffer from diagonal dominance of the Gram matrix and a quadratic complexity w.r.t. the sample size. In this work, we study a family of alignment-aware positive definite (p.d.) kernels, with its feature embedding given by a distribution of \emph{Random Warping Series (RWS)}. The proposed kernel does not suffer from the issue of diagonal dominance while naturally enjoys a \emph{Random Features} (RF) approximation, which reduces the computational complexity of existing DTW-based techniques from quadratic to linear in terms of both the number and the length of time-series. We also study the convergence of the RF approximation for the domain of time series of unbounded length. Our extensive experiments on 16 benchmark datasets demonstrate that RWS outperforms or matches state-of-the-art classification and clustering methods in both accuracy and computational time. Our code and data is available at { \url{https://github.com/IBM/RandomWarpingSeries}}.
Scalable Spectral Clustering Using Random Binning Features
Wu, Lingfei, Chen, Pin-Yu, Yen, Ian En-Hsu, Xu, Fangli, Xia, Yinglong, Aggarwal, Charu
Spectral clustering is one of the most effective clustering approaches that capture hidden cluster structures in the data. However, it does not scale well to large-scale problems due to its quadratic complexity in constructing similarity graphs and computing subsequent eigendecomposition. Although a number of methods have been proposed to accelerate spectral clustering, most of them compromise considerable information loss in the original data for reducing computational bottlenecks. In this paper, we present a novel scalable spectral clustering method using Random Binning features (RB) to simultaneously accelerate both similarity graph construction and the eigendecomposition. Specifically, we implicitly approximate the graph similarity (kernel) matrix by the inner product of a large sparse feature matrix generated by RB. Then we introduce a state-of-the-art SVD solver to effectively compute eigenvectors of this large matrix for spectral clustering. Using these two building blocks, we reduce the computational cost from quadratic to linear in the number of data points while achieving similar accuracy. Our theoretical analysis shows that spectral clustering via RB converges faster to the exact spectral clustering than the standard Random Feature approximation. Extensive experiments on 8 benchmarks show that the proposed method either outperforms or matches the state-of-the-art methods in both accuracy and runtime. Moreover, our method exhibits linear scalability in both the number of data samples and the number of RB features.