Xu, Da
Survey for Landing Generative AI in Social and E-commerce Recsys -- the Industry Perspectives
Xu, Da, Zhang, Danqing, Yang, Guangyu, Yang, Bo, Xu, Shuyuan, Zheng, Lingling, Liang, Cindy
Recently, generative AI (GAI), with their emerging capabilities, have presented unique opportunities for augmenting and revolutionizing industrial recommender systems (Recsys). Despite growing research efforts at the intersection of these fields, the integration of GAI into industrial Recsys remains in its infancy, largely due to the intricate nature of modern industrial Recsys infrastructure, operations, and product sophistication. Drawing upon our experiences in successfully integrating GAI into several major social and e-commerce platforms, this survey aims to comprehensively examine the underlying system and AI foundations, solution frameworks, connections to key research advancements, as well as summarize the practical insights and challenges encountered in the endeavor to integrate GAI into industrial Recsys. As pioneering work in this domain, we hope outline the representative developments of relevant fields, shed lights on practical GAI adoptions in the industry, and motivate future research.
Pretrained Embeddings for E-commerce Machine Learning: When it Fails and Why?
Xu, Da, Yang, Bo
The use of pretrained embeddings has become widespread in modern e-commerce machine learning (ML) systems. In practice, however, we have encountered several key issues when using pretrained embedding in a real-world production system, many of which cannot be fully explained by current knowledge. Unfortunately, we find that there is a lack of a thorough understanding of how pre-trained embeddings work, especially their intrinsic properties and interactions with downstream tasks. Consequently, it becomes challenging to make interactive and scalable decisions regarding the use of pre-trained embeddings in practice. Our investigation leads to two significant discoveries about using pretrained embeddings in e-commerce applications. Firstly, we find that the design of the pretraining and downstream models, particularly how they encode and decode information via embedding vectors, can have a profound impact. Secondly, we establish a principled perspective of pre-trained embeddings via the lens of kernel analysis, which can be used to evaluate their predictability, interactively and scalably. These findings help to address the practical challenges we faced and offer valuable guidance for successful adoption of pretrained embeddings in real-world production. Our conclusions are backed by solid theoretical reasoning, benchmark experiments, as well as online testings.
Towards the D-Optimal Online Experiment Design for Recommender Selection
Xu, Da, Ruan, Chuanwei, Korpeoglu, Evren, Kumar, Sushant, Achan, Kannan
Selecting the optimal recommender via online exploration-exploitation is catching increasing attention where the traditional A/B testing can be slow and costly, and offline evaluations are prone to the bias of history data. Finding the optimal online experiment is nontrivial since both the users and displayed recommendations carry contextual features that are informative to the reward. While the problem can be formalized via the lens of multi-armed bandits, the existing solutions are found less satisfactorily because the general methodologies do not account for the case-specific structures, particularly for the e-commerce recommendation we study. To fill in the gap, we leverage the \emph{D-optimal design} from the classical statistics literature to achieve the maximum information gain during exploration, and reveal how it fits seamlessly with the modern infrastructure of online inference. To demonstrate the effectiveness of the optimal designs, we provide semi-synthetic simulation studies with published code and data for reproducibility purposes. We then use our deployment example on Walmart.com to fully illustrate the practical insights and effectiveness of the proposed methods.
Adversarial Counterfactual Learning and Evaluation for Recommender System
Xu, Da, Ruan, Chuanwei, Korpeoglu, Evren, Kumar, Sushant, Achan, Kannan
The feedback data of recommender systems are often subject to what was exposed to the users; however, most learning and evaluation methods do not account for the underlying exposure mechanism. We first show in theory that applying supervised learning to detect user preferences may end up with inconsistent results in the absence of exposure information. The counterfactual propensity-weighting approach from causal inference can account for the exposure mechanism; nevertheless, the partial-observation nature of the feedback data can cause identifiability issues. We propose a principled solution by introducing a minimax empirical risk formulation. We show that the relaxation of the dual problem can be converted to an adversarial game between two recommendation models, where the opponent of the candidate model characterizes the underlying exposure mechanism. We provide learning bounds and conduct extensive simulation studies to illustrate and justify the proposed approach over a broad range of recommendation settings, which shed insights on the various benefits of the proposed approach.
Sparse Symmetric Tensor Regression for Functional Connectivity Analysis
Xu, Da
Tensor regression models, such as CP regression and Tucker regression, have many successful applications in neuroimaging analysis where the covariates are of ultrahigh dimensionality and possess complex spatial structures. The high-dimensional covariate arrays, also known as tensors, can be approximated by low-rank structures and fit into the generalized linear models. The resulting tensor regression achieves a significant reduction in dimensionality while remaining efficient in estimation and prediction. Brain functional connectivity is an essential measure of brain activity and has shown significant association with neurological disorders such as Alzheimer's disease. The symmetry nature of functional connectivity is a property that has not been explored in previous tensor regression models. In this work, we propose a sparse symmetric tensor regression that further reduces the number of free parameters and achieves superior performance over symmetrized and ordinary CP regression, under a variety of simulation settings. We apply the proposed method to a study of Alzheimer's disease (AD) and normal ageing from the Berkeley Aging Cohort Study (BACS) and detect two regions of interest that have been identified important to AD.
Modeling Complementary Products and Customer Preferences with Context Knowledge for Online Recommendation
Xu, Da, Ruan, Chuanwei, Korpeoglu, Evren, Kumar, Sushant, Achan, Kannan
Modeling item complementariness and user preferences from purchase data is essential for learning good representations of products and customers, which empowers the modern personalized recommender system for Walmart's e-commerce platform. The intrinsic complementary relationship among products captures the buy-also-buy patterns and provides great sources for recommendations. Product complementary patterns, though often reflected by population purchase behaviors, are not separable from customer-specific bias in purchase data. We propose a unified model with Bayesian network structure that takes account of both factors. In the meantime, we merge the contextual knowledge of both products and customers into their representations. We also use the dual product embeddings to capture the intrinsic properties of complementariness, such as asymmetry. The separating hyperplane theory sheds light on the geometric interpretation of using the additional embedding. We conduct extensive evaluations on our model before final production, and propose a novel ranking criterion based on product and customer embeddings. Our method compares favorably to existing approaches in various offline and online testings, and case studies demonstrate the advantage and usefulness of the dual product embeddings as well as the user embeddings.
Generative Graph Convolutional Network for Growing Graphs
Xu, Da, Ruan, Chuanwei, Motwani, Kamiya, Korpeoglu, Evren, Kumar, Sushant, Achan, Kannan
Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.