Goto

Collaborating Authors

 Xu, Cong


DropletVideo: A Dataset and Approach to Explore Integral Spatio-Temporal Consistent Video Generation

arXiv.org Artificial Intelligence

Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.


CAdam: Confidence-Based Optimization for Online Learning

arXiv.org Machine Learning

Modern recommendation systems frequently employ online learning to dynamically update their models with freshly collected data. The most commonly used optimizer for updating neural networks in these contexts is the Adam optimizer, which integrates momentum ($m_t$) and adaptive learning rate ($v_t$). However, the volatile nature of online learning data, characterized by its frequent distribution shifts and presence of noises, poses significant challenges to Adam's standard optimization process: (1) Adam may use outdated momentum and the average of squared gradients, resulting in slower adaptation to distribution changes, and (2) Adam's performance is adversely affected by data noise. To mitigate these issues, we introduce CAdam, a confidence-based optimization strategy that assesses the consistence between the momentum and the gradient for each parameter dimension before deciding on updates. If momentum and gradient are in sync, CAdam proceeds with parameter updates according to Adam's original formulation; if not, it temporarily withholds updates and monitors potential shifts in data distribution in subsequent iterations. This method allows CAdam to distinguish between the true distributional shifts and mere noise, and adapt more quickly to new data distributions. Our experiments with both synthetic and real-world datasets demonstrate that CAdam surpasses other well-known optimizers, including the original Adam, in efficiency and noise robustness. Furthermore, in large-scale A/B testing within a live recommendation system, CAdam significantly enhances model performance compared to Adam, leading to substantial increases in the system's gross merchandise volume (GMV).


Enhancing User Interest based on Stream Clustering and Memory Networks in Large-Scale Recommender Systems

arXiv.org Artificial Intelligence

Recommender Systems (RSs) provide personalized recommendation Recommender Systems (RSs) [1, 2] which provide personalized service based on user interest, which are widely used in various recommendation service based on user interest are widely used in platforms. However, there are lots of users with sparse interest various platforms such as short video platforms [3, 7, 14], video due to lacking consumption behaviors, which leads to poor recommendation platforms [4, 5], E-commerce platforms [6, 8-11] and social networks results for them. This problem is widespread in [12, 13], serving billions of users. In RSs, Ranking typically large-scale RSs and is particularly difficult to address. To solve uses a Multi-Task Learning model (MTL) [4, 8, 16-21] and lots this problem, we propose a novel solution named User Interest of features to finely predict the scores of various user behaviors Enhancement (UIE) which enhances user interest including user such as click, watching time, fast slide, like and sharing for thousands profile and user history behavior sequences using the enhancement of candidates. The accuracy of the scores outputted by MTL vectors and personalized enhancement vector generated with is crucial for RSs [4]. In RSs, user interest includes user profile the help of other similar users and relevant items based on stream and user history behavior sequences, as shown in Figure 1 and clustering and memory networks from different perspectives. UIE Figure 2, which determines the upper limit of ranking model's not only remarkably improves model performance on the users performance. However, lots of users only have sparse interest due with sparse interest but also significantly enhance model performance to lacking consumption behaviors.


Comparing remote sensing-based forest biomass mapping approaches using new forest inventory plots in contrasting forests in northeastern and southwestern China

arXiv.org Artificial Intelligence

Large-scale high spatial resolution aboveground biomass (AGB) maps play a crucial role in determining forest carbon stocks and how they are changing, which is instrumental in understanding the global carbon cycle, and implementing policy to mitigate climate change. The advent of the new space-borne LiDAR sensor, NASA's GEDI instrument, provides unparalleled possibilities for the accurate and unbiased estimation of forest AGB at high resolution, particularly in dense and tall forests, where Synthetic Aperture Radar (SAR) and passive optical data exhibit saturation. However, GEDI is a sampling instrument, collecting dispersed footprints, and its data must be combined with that from other continuous cover satellites to create high-resolution maps, using local machine learning methods. In this study, we developed local models to estimate forest AGB from GEDI L2A data, as the models used to create GEDI L4 AGB data incorporated minimal field data from China. We then applied LightGBM and random forest regression to generate wall-to-wall AGB maps at 25 m resolution, using extensive GEDI footprints as well as Sentinel-1 data, ALOS-2 PALSAR-2 and Sentinel-2 optical data. Through a 5-fold cross-validation, LightGBM demonstrated a slightly better performance than Random Forest across two contrasting regions. However, in both regions, the computation speed of LightGBM is substantially faster than that of the random forest model, requiring roughly one-third of the time to compute on the same hardware. Through the validation against field data, the 25 m resolution AGB maps generated using the local models developed in this study exhibited higher accuracy compared to the GEDI L4B AGB data. We found in both regions an increase in error as slope increased. The trained models were tested on nearby but different regions and exhibited good performance.


Infer Induced Sentiment of Comment Response to Video: A New Task, Dataset and Baseline

arXiv.org Artificial Intelligence

Existing video multi-modal sentiment analysis mainly focuses on the sentiment expression of people within the video, yet often neglects the induced sentiment of viewers while watching the videos. Induced sentiment of viewers is essential for inferring the public response to videos, has broad application in analyzing public societal sentiment, effectiveness of advertising and other areas. The micro videos and the related comments provide a rich application scenario for viewers induced sentiment analysis. In light of this, we introduces a novel research task, Multi-modal Sentiment Analysis for Comment Response of Video Induced(MSA-CRVI), aims to inferring opinions and emotions according to the comments response to micro video. Meanwhile, we manually annotate a dataset named Comment Sentiment toward to Micro Video (CSMV) to support this research. It is the largest video multi-modal sentiment dataset in terms of scale and video duration to our knowledge, containing 107,267 comments and 8,210 micro videos with a video duration of 68.83 hours. To infer the induced sentiment of comment should leverage the video content, so we propose the Video Content-aware Comment Sentiment Analysis (VC-CSA) method as baseline to address the challenges inherent in this new task. Extensive experiments demonstrate that our method is showing significant improvements over other established baselines.


An Off-Policy Reinforcement Learning Algorithm Customized for Multi-Task Fusion in Large-Scale Recommender Systems

arXiv.org Artificial Intelligence

As the last critical stage of RSs, Multi-Task Fusion (MTF) is responsible for combining multiple scores outputted by Multi-Task Learning (MTL) into a final score to maximize user satisfaction, which determines the ultimate recommendation results. Recently, to optimize long-term user satisfaction within a recommendation session, Reinforcement Learning (RL) is used for MTF in the industry. However, the off-policy RL algorithms used for MTF so far have the following severe problems: 1) to avoid out-of-distribution (OOD) problem, their constraints are overly strict, which seriously damage their performance; 2) they are unaware of the exploration policy used for producing training data and never interact with real environment, so only suboptimal policy can be learned; 3) the traditional exploration policies are inefficient and hurt user experience. To solve the above problems, we propose a novel method named IntegratedRL-MTF customized for MTF in large-scale RSs. IntegratedRL-MTF integrates off-policy RL model with our online exploration policy to relax overstrict and complicated constraints, which significantly improves its performance. We also design an extremely efficient exploration policy, which eliminates low-value exploration space and focuses on exploring potential high-value state-action pairs. Moreover, we adopt progressive training mode to further enhance our model's performance with the help of our exploration policy. We conduct extensive offline and online experiments in the short video channel of Tencent News. The results demonstrate that our model outperforms other models remarkably. IntegratedRL-MTF has been fully deployed in our RS and other large-scale RSs in Tencent, which have achieved significant improvements.


Understanding Adversarial Robustness from Feature Maps of Convolutional Layers

arXiv.org Artificial Intelligence

The adversarial robustness of a neural network mainly relies on two factors: model capacity and anti-perturbation ability. In this paper, we study the anti-perturbation ability of the network from the feature maps of convolutional layers. Our theoretical analysis discovers that larger convolutional feature maps before average pooling can contribute to better resistance to perturbations, but the conclusion is not true for max pooling. It brings new inspiration to the design of robust neural networks and urges us to apply these findings to improve existing architectures. The proposed modifications are very simple and only require upsampling the inputs or slightly modifying the stride configurations of downsampling operators. We verify our approaches on several benchmark neural network architectures, including AlexNet, VGG, RestNet18, and PreActResNet18. Non-trivial improvements in terms of both natural accuracy and adversarial robustness can be achieved under various attack and defense mechanisms. The code is available at \url{https://github.com/MTandHJ/rcm}.


Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box

arXiv.org Artificial Intelligence

With the rapid development of detectors, Bounding Box Regression (BBR) loss function has constantly updated and optimized. However, the existing IoU-based BBR still focus on accelerating convergence by adding new loss terms, ignoring the limitations of IoU loss term itself. Although theoretically IoU loss can effectively describe the state of bounding box regression,in practical applications, it cannot adjust itself according to different detectors and detection tasks, and does not have strong generalization. Based on the above, we first analyzed the BBR model and concluded that distinguishing different regression samples and using different scales of auxiliary bounding boxes to calculate losses can effectively accelerate the bounding box regression process. For high IoU samples, using smaller auxiliary bounding boxes to calculate losses can accelerate convergence, while larger auxiliary bounding boxes are suitable for low IoU samples. Then, we propose Inner-IoU loss, which calculates IoU loss through auxiliary bounding boxes. For different datasets and detectors, we introduce a scaling factor ratio to control the scale size of the auxiliary bounding boxes for calculating losses. Finally, integrate Inner-IoU into the existing IoU-based loss functions for simulation and comparative experiments. The experiment result demonstrate a further enhancement in detection performance with the utilization of the method proposed in this paper, verifying the effectiveness and generalization ability of Inner-IoU loss. Code is available at https://github.com/malagoutou/Inner-IoU.


Graph-enhanced Optimizers for Structure-aware Recommendation Embedding Evolution

arXiv.org Artificial Intelligence

Embedding plays a critical role in modern recommender systems because they are virtual representations of real-world entities and the foundation for subsequent decision models. In this paper, we propose a novel embedding update mechanism, Structure-aware Embedding Evolution (SEvo for short), to encourage related nodes to evolve similarly at each step. Unlike GNN (Graph Neural Network) that typically serves as an intermediate part, SEvo is able to directly inject the graph structure information into embedding with negligible computational overhead in training. The convergence properties of SEvo as well as its possible variants are theoretically analyzed to justify the validity of the designs. Moreover, SEvo can be seamlessly integrated into existing optimizers for state-of-the-art performance. In particular, SEvo-enhanced AdamW with moment estimate correction demonstrates consistent improvements across a spectrum of models and datasets, suggesting a novel technical route to effectively utilize graph structure information beyond explicit GNN modules.


Missingness Augmentation: A General Approach for Improving Generative Imputation Models

arXiv.org Artificial Intelligence

Missing data imputation is a fundamental problem in data analysis, and many studies have been conducted to improve its performance by exploring model structures and learning procedures. However, data augmentation, as a simple yet effective method, has not received enough attention in this area. In this paper, we propose a novel data augmentation method called Missingness Augmentation (MisA) for generative imputation models. Our approach dynamically produces incomplete samples at each epoch by utilizing the generator's output, constraining the augmented samples using a simple reconstruction loss, and combining this loss with the original loss to form the final optimization objective. As a general augmentation technique, MisA can be easily integrated into generative imputation frameworks, providing a simple yet effective way to enhance their performance. Experimental results demonstrate that MisA significantly improves the performance of many recently proposed generative imputation models on a variety of tabular and image datasets. The code is available at \url{https://github.com/WYu-Feng/Missingness-Augmentation}.