Xu, Chenhao
SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT Systems
Xu, Chenhao, Ge, Jiaqi, Li, Yong, Deng, Yao, Gao, Longxiang, Zhang, Mengshi, Xiang, Yong, Zheng, Xi
Federated learning (FL) enables collaborative training of a shared model on edge devices while maintaining data privacy. FL is effective when dealing with independent and identically distributed (iid) datasets, but struggles with non-iid datasets. Various personalized approaches have been proposed, but such approaches fail to handle underlying shifts in data distribution, such as data distribution skew commonly observed in real-world scenarios (e.g., driver behavior in smart transportation systems changing across time and location). Additionally, trust concerns among unacquainted devices and security concerns with the centralized aggregator pose additional challenges. To address these challenges, this paper presents a dynamically optimized personal deep learning scheme based on blockchain and federated learning. Specifically, the innovative smart contract implemented in the blockchain allows distributed edge devices to reach a consensus on the optimal weights of personalized models. Experimental evaluations using multiple models and real-world datasets demonstrate that the proposed scheme achieves higher accuracy and faster convergence compared to traditional federated and personalized learning approaches.
An Efficient and Reliable Asynchronous Federated Learning Scheme for Smart Public Transportation
Xu, Chenhao, Qu, Youyang, Luan, Tom H., Eklund, Peter W., Xiang, Yong, Gao, Longxiang
Since the traffic conditions change over time, machine learning models that predict traffic flows must be updated continuously and efficiently in smart public transportation. Federated learning (FL) is a distributed machine learning scheme that allows buses to receive model updates without waiting for model training on the cloud. However, FL is vulnerable to poisoning or DDoS attacks since buses travel in public. Some work introduces blockchain to improve reliability, but the additional latency from the consensus process reduces the efficiency of FL. Asynchronous Federated Learning (AFL) is a scheme that reduces the latency of aggregation to improve efficiency, but the learning performance is unstable due to unreasonably weighted local models. To address the above challenges, this paper offers a blockchain-based asynchronous federated learning scheme with a dynamic scaling factor (DBAFL). Specifically, the novel committee-based consensus algorithm for blockchain improves reliability at the lowest possible cost of time. Meanwhile, the devised dynamic scaling factor allows AFL to assign reasonable weights to stale local models. Extensive experiments conducted on heterogeneous devices validate outperformed learning performance, efficiency, and reliability of DBAFL.