Not enough data to create a plot.
Try a different view from the menu above.
Xu, Chengzhong
A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving
Liao, Haicheng, Li, Yongkang, Li, Zhenning, Wang, Chengyue, Cui, Zhiyong, Li, Shengbo Eben, Xu, Chengzhong
In autonomous vehicle (AV) technology, the ability to accurately predict the movements of surrounding vehicles is paramount for ensuring safety and operational efficiency. Incorporating human decision-making insights enables AVs to more effectively anticipate the potential actions of other vehicles, significantly improving prediction accuracy and responsiveness in dynamic environments. This paper introduces the Human-Like Trajectory Prediction (HLTP) model, which adopts a teacher-student knowledge distillation framework inspired by human cognitive processes. The HLTP model incorporates a sophisticated teacher-student knowledge distillation framework. The "teacher" model, equipped with an adaptive visual sector, mimics the visual processing of the human brain, particularly the functions of the occipital and temporal lobes. The "student" model focuses on real-time interaction and decision-making, drawing parallels to prefrontal and parietal cortex functions. This approach allows for dynamic adaptation to changing driving scenarios, capturing essential perceptual cues for accurate prediction. Evaluated using the Macao Connected and Autonomous Driving (MoCAD) dataset, along with the NGSIM and HighD benchmarks, HLTP demonstrates superior performance compared to existing models, particularly in challenging environments with incomplete data. The project page is available at Github.
Deep Active Learning with Noise Stability
Li, Xingjian, Yang, Pengkun, Gu, Yangcheng, Zhan, Xueying, Wang, Tianyang, Xu, Min, Xu, Chengzhong
Uncertainty estimation for unlabeled data is crucial to active learning. With a deep neural network employed as the backbone model, the data selection process is highly challenging due to the potential over-confidence of the model inference. Existing methods resort to special learning fashions (e.g. adversarial) or auxiliary models to address this challenge. This tends to result in complex and inefficient pipelines, which would render the methods impractical. In this work, we propose a novel algorithm that leverages noise stability to estimate data uncertainty. The key idea is to measure the output derivation from the original observation when the model parameters are randomly perturbed by noise. We provide theoretical analyses by leveraging the small Gaussian noise theory and demonstrate that our method favors a subset with large and diverse gradients. Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis. It achieves competitive performance compared against state-of-the-art active learning baselines.
Human Observation-Inspired Trajectory Prediction for Autonomous Driving in Mixed-Autonomy Traffic Environments
Liao, Haicheng, Liu, Shangqian, Li, Yongkang, Li, Zhenning, Wang, Chengyue, Wang, Bonan, Guan, Yanchen, Xu, Chengzhong
In the burgeoning field of autonomous vehicles (AVs), trajectory prediction remains a formidable challenge, especially in mixed autonomy environments. Traditional approaches often rely on computational methods such as time-series analysis. Our research diverges significantly by adopting an interdisciplinary approach that integrates principles of human cognition and observational behavior into trajectory prediction models for AVs. We introduce a novel "adaptive visual sector" mechanism that mimics the dynamic allocation of attention human drivers exhibit based on factors like spatial orientation, proximity, and driving speed. Additionally, we develop a "dynamic traffic graph" using Convolutional Neural Networks (CNN) and Graph Attention Networks (GAT) to capture spatio-temporal dependencies among agents. Benchmark tests on the NGSIM, HighD, and MoCAD datasets reveal that our model (GAVA) outperforms state-of-the-art baselines by at least 15.2%, 19.4%, and 12.0%, respectively. Our findings underscore the potential of leveraging human cognition principles to enhance the proficiency and adaptability of trajectory prediction algorithms in AVs. The code for the proposed model is available at our Github.
Night-Rider: Nocturnal Vision-aided Localization in Streetlight Maps Using Invariant Extended Kalman Filtering
Gao, Tianxiao, Zhao, Mingle, Xu, Chengzhong, Kong, Hui
Vision-aided localization for low-cost mobile robots in diverse environments has attracted widespread attention recently. Although many current systems are applicable in daytime environments, nocturnal visual localization is still an open problem owing to the lack of stable visual information. An insight from most nocturnal scenes is that the static and bright streetlights are reliable visual information for localization. Hence we propose a nocturnal vision-aided localization system in streetlight maps with a novel data association and matching scheme using object detection methods. We leverage the Invariant Extended Kalman Filter (InEKF) to fuse IMU, odometer, and camera measurements for consistent state estimation at night. Furthermore, a tracking recovery module is also designed for tracking failures. Experiments on multiple real nighttime scenes validate that the system can achieve remarkably accurate and robust localization in nocturnal environments.
Open Set Dandelion Network for IoT Intrusion Detection
Wu, Jiashu, Dai, Hao, Kent, Kenneth B., Yen, Jerome, Xu, Chengzhong, Wang, Yang
As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.
BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous Driving
Liao, Haicheng, Li, Zhenning, Shen, Huanming, Zeng, Wenxuan, Liao, Dongping, Li, Guofa, Li, Shengbo Eben, Xu, Chengzhong
The ability to accurately predict the trajectory of surrounding vehicles is a critical hurdle to overcome on the journey to fully autonomous vehicles. To address this challenge, we pioneer a novel behavior-aware trajectory prediction model (BAT) that incorporates insights and findings from traffic psychology, human behavior, and decision-making. Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules that perceive and understand the underlying interactions and account for uncertainty and variability in prediction, enabling higher-level learning and flexibility without rigid categorization of driving behavior. Importantly, this approach eliminates the need for manual labeling in the training process and addresses the challenges of non-continuous behavior labeling and the selection of appropriate time windows. We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets, showcasing its superiority over prevailing state-of-the-art (SOTA) benchmarks in terms of prediction accuracy and efficiency. Remarkably, even when trained on reduced portions of the training data (25%), our model outperforms most of the baselines, demonstrating its robustness and efficiency in predicting vehicle trajectories, and the potential to reduce the amount of data required to train autonomous vehicles, especially in corner cases. In conclusion, the behavior-aware model represents a significant advancement in the development of autonomous vehicles capable of predicting trajectories with the same level of proficiency as human drivers. The project page is available at https://github.com/Petrichor625/BATraj-Behavior-aware-Model.
GPT-4 Enhanced Multimodal Grounding for Autonomous Driving: Leveraging Cross-Modal Attention with Large Language Models
Liao, Haicheng, Shen, Huanming, Li, Zhenning, Wang, Chengyue, Li, Guofa, Bie, Yiming, Xu, Chengzhong
In the field of autonomous vehicles (AVs), accurately discerning commander intent and executing linguistic commands within a visual context presents a significant challenge. This paper introduces a sophisticated encoder-decoder framework, developed to address visual grounding in AVs.Our Context-Aware Visual Grounding (CAVG) model is an advanced system that integrates five core encoders-Text, Image, Context, and Cross-Modal-with a Multimodal decoder. This integration enables the CAVG model to adeptly capture contextual semantics and to learn human emotional features, augmented by state-of-the-art Large Language Models (LLMs) including GPT-4. The architecture of CAVG is reinforced by the implementation of multi-head cross-modal attention mechanisms and a Region-Specific Dynamic (RSD) layer for attention modulation. This architectural design enables the model to efficiently process and interpret a range of cross-modal inputs, yielding a comprehensive understanding of the correlation between verbal commands and corresponding visual scenes. Empirical evaluations on the Talk2Car dataset, a real-world benchmark, demonstrate that CAVG establishes new standards in prediction accuracy and operational efficiency. Notably, the model exhibits exceptional performance even with limited training data, ranging from 50% to 75% of the full dataset. This feature highlights its effectiveness and potential for deployment in practical AV applications. Moreover, CAVG has shown remarkable robustness and adaptability in challenging scenarios, including long-text command interpretation, low-light conditions, ambiguous command contexts, inclement weather conditions, and densely populated urban environments. The code for the proposed model is available at our Github.
Edge Accelerated Robot Navigation with Hierarchical Motion Planning
Li, Guoliang, Han, Ruihua, Wang, Shuai, Gao, Fei, Eldar, Yonina C., Xu, Chengzhong
Low-cost autonomous robots suffer from limited onboard computing power, resulting in excessive computation time when navigating in cluttered environments. This paper presents Edge Accelerated Robot Navigation, or EARN for short, to achieve real-time collision avoidance by adopting hierarchical motion planning (HMP). In contrast to existing local or edge motion planning solutions that ignore the interdependency between low-level motion planning and high-level resource allocation, EARN adopts model predictive switching (MPS) that maximizes the expected switching gain w.r.t. robot states and actions under computation and communication resource constraints. As such, each robot can dynamically switch between a point-mass motion planner executed locally to guarantee safety (e.g., path-following) and a full-shape motion planner executed non-locally to guarantee efficiency (e.g., overtaking). The crux to EARN is a two-time scale integrated decision-planning algorithm based on bilevel mixed-integer optimization, and a fast conditional collision avoidance algorithm based on penalty dual decomposition. We validate the performance of EARN in indoor simulation, outdoor simulation, and real-world environments. Experiments show that EARN achieves significantly smaller navigation time and collision ratios than state-of-the-art navigation approaches.
Why semantics matters: A deep study on semantic particle-filtering localization in a LiDAR semantic pole-map
Huang, Yuming, Gu, Yi, Xu, Chengzhong, Kong, Hui
In most urban and suburban areas, pole-like structures such as tree trunks or utility poles are ubiquitous. These structural landmarks are very useful for the localization of autonomous vehicles given their geometrical locations in maps and measurements from sensors. In this work, we aim at creating an accurate map for autonomous vehicles or robots with pole-like structures as the dominant localization landmarks, hence called pole-map. In contrast to the previous pole-based mapping or localization methods, we exploit the semantics of pole-like structures. Specifically, semantic segmentation is achieved by a new mask-range transformer network in a mask-classfication paradigm. With the semantics extracted for the pole-like structures in each frame, a multi-layer semantic pole-map is created by aggregating the detected pole-like structures from all frames. Given the semantic pole-map, we propose a semantic particle-filtering localization scheme for vehicle localization. Theoretically, we have analyzed why the semantic information can benefit the particle-filter localization, and empirically it is validated on the public SemanticKITTI dataset that the particle-filtering localization with semantics achieves much better performance than the counterpart without semantics when each particle's odometry prediction and/or the online observation is subject to uncertainties at significant levels.
iCOIL: Scenario Aware Autonomous Parking Via Integrated Constrained Optimization and Imitation Learning
Huang, Lexiong, Han, Ruihua, Li, Guoliang, Li, He, Wang, Shuai, Wang, Yang, Xu, Chengzhong
Autonomous parking (AP) is an emering technique to navigate an intelligent vehicle to a parking space without any human intervention. Existing AP methods based on mathematical optimization or machine learning may lead to potential failures due to either excessive execution time or lack of generalization. To fill this gap, this paper proposes an integrated constrained optimization and imitation learning (iCOIL) approach to achieve efficient and reliable AP. The iCOIL method has two candidate working modes, i.e., CO and IL, and adopts a hybrid scenario analysis (HSA) model to determine the better mode under various scenarios. We implement and verify iCOIL on the Macao Car Racing Metaverse (MoCAM) platform. Results show that iCOIL properly adapts to different scenarios during the entire AP procedure, and achieves significantly larger success rates than other benchmarks.