Goto

Collaborating Authors

 Xu, Changsheng


Learning Transferable Conceptual Prototypes for Interpretable Unsupervised Domain Adaptation

arXiv.org Artificial Intelligence

Despite the great progress of unsupervised domain adaptation (UDA) with the deep neural networks, current UDA models are opaque and cannot provide promising explanations, limiting their applications in the scenarios that require safe and controllable model decisions. At present, a surge of work focuses on designing deep interpretable methods with adequate data annotations and only a few methods consider the distributional shift problem. Most existing interpretable UDA methods are post-hoc ones, which cannot facilitate the model learning process for performance enhancement. In this paper, we propose an inherently interpretable method, named Transferable Conceptual Prototype Learning (TCPL), which could simultaneously interpret and improve the processes of knowledge transfer and decision-making in UDA. To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process. With the learned transferable prototypes, a self-predictive consistent pseudo-label strategy that fuses confidence, predictions, and prototype information, is designed for selecting suitable target samples for pseudo annotations and gradually narrowing down the domain gap. Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.


A Survey on Interpretable Cross-modal Reasoning

arXiv.org Artificial Intelligence

In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities. The summarized methods, datasets, and other resources are available at https://github.com/ZuyiZhou/Awesome-Interpretable-Cross-modal-Reasoning.


Introducing Foundation Models as Surrogate Models: Advancing Towards More Practical Adversarial Attacks

arXiv.org Artificial Intelligence

Recently, the no-box adversarial attack, in which the attacker lacks access to the model's architecture, weights, and training data, become the most practical and challenging attack setup. However, there is an unawareness of the potential and flexibility inherent in the surrogate model selection process on no-box setting. Inspired by the burgeoning interest in utilizing foundational models to address downstream tasks, this paper adopts an innovative idea that 1) recasting adversarial attack as a downstream task. Specifically, image noise generation to meet the emerging trend and 2) introducing foundational models as surrogate models. Harnessing the concept of non-robust features, we elaborate on two guiding principles for surrogate model selection to explain why the foundational model is an optimal choice for this role. However, paradoxically, we observe that these foundational models underperform. Analyzing this unexpected behavior within the feature space, we attribute the lackluster performance of foundational models (e.g., CLIP) to their significant representational capacity and, conversely, their lack of discriminative prowess. To mitigate this issue, we propose the use of a margin-based loss strategy for the fine-tuning of foundational models on target images. The experimental results verify that our approach, which employs the basic Fast Gradient Sign Method (FGSM) attack algorithm, outstrips the performance of other, more convoluted algorithms. We conclude by advocating for the research community to consider surrogate models as crucial determinants in the effectiveness of adversarial attacks in no-box settings. The implications of our work bear relevance for improving the efficacy of such adversarial attacks and the overall robustness of AI systems.


Visual-Language Prompt Tuning with Knowledge-guided Context Optimization

arXiv.org Artificial Intelligence

Prompt tuning is an effective way to adapt the pre-trained visual-language model (VLM) to the downstream task using task-related textual tokens. Representative CoOp-based work combines the learnable textual tokens with the class tokens to obtain specific textual knowledge. However, the specific textual knowledge is the worse generalization to the unseen classes because it forgets the essential general textual knowledge having a strong generalization ability. To tackle this issue, we introduce a novel Knowledge-guided Context Optimization (KgCoOp) to enhance the generalization ability of the learnable prompt for unseen classes. The key insight of KgCoOp is that forgetting about essential knowledge can be alleviated by reducing the discrepancy between the learnable prompt and the hand-crafted prompt. Especially, KgCoOp minimizes the discrepancy between the textual embeddings generated by learned prompts and the hand-crafted prompts. Finally, adding the KgCoOp upon the contrastive loss can make a discriminative prompt for both seen and unseen tasks. Extensive evaluation of several benchmarks demonstrates that the proposed Knowledge-guided Context Optimization is an efficient method for prompt tuning, \emph{i.e.,} achieves better performance with less training time.


Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples

arXiv.org Artificial Intelligence

There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle. Code is available at \url{https://github.com/jiamingzhang94/Unlearnable-Clusters}.


Backdoor for Debias: Mitigating Model Bias with Backdoor Attack-based Artificial Bias

arXiv.org Artificial Intelligence

With the swift advancement of deep learning, state-of-the-art algorithms have been utilized in various social situations. Nonetheless, some algorithms have been discovered to exhibit biases and provide unequal results. The current debiasing methods face challenges such as poor utilization of data or intricate training requirements. In this work, we found that the backdoor attack can construct an artificial bias similar to the model bias derived in standard training. Considering the strong adjustability of backdoor triggers, we are motivated to mitigate the model bias by carefully designing reverse artificial bias created from backdoor attack. Based on this, we propose a backdoor debiasing framework based on knowledge distillation, which effectively reduces the model bias from original data and minimizes security risks from the backdoor attack. The proposed solution is validated on both image and structured datasets, showing promising results. This work advances the understanding of backdoor attacks and highlights its potential for beneficial applications. The code for the study can be found at \url{https://anonymous.4open.science/r/DwB-BC07/}.


GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis

arXiv.org Artificial Intelligence

Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.


Learning to Learn a Cold-start Sequential Recommender

arXiv.org Artificial Intelligence

National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China, School of Artificial Intelligence, University of Chinese Academy of Sciences, China, and Peng Cheng Laboratory, China The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user's cold-start recommendation problem. We propose a meta-learning based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. The extensive quantitative experiments on three widely-used datasets show the remarkable performance of metaCSR in dealing with user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization. Recommendation systems (RS) intend to address the information explosion by finding a set of items for users to meet their personalized interests in many online applications, such as E-commerce websites [17], social networks [14], video-sharing sites [3] and news websites [36]. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Abstracting with credit is permitted.


DualVGR: A Dual-Visual Graph Reasoning Unit for Video Question Answering

arXiv.org Artificial Intelligence

Video question answering is a challenging task, which requires agents to be able to understand rich video contents and perform spatial-temporal reasoning. However, existing graph-based methods fail to perform multi-step reasoning well, neglecting two properties of VideoQA: (1) Even for the same video, different questions may require different amount of video clips or objects to infer the answer with relational reasoning; (2) During reasoning, appearance and motion features have complicated interdependence which are correlated and complementary to each other. Based on these observations, we propose a Dual-Visual Graph Reasoning Unit (DualVGR) which reasons over videos in an end-to-end fashion. The first contribution of our DualVGR is the design of an explainable Query Punishment Module, which can filter out irrelevant visual features through multiple cycles of reasoning. The second contribution is the proposed Video-based Multi-view Graph Attention Network, which captures the relations between appearance and motion features. Our DualVGR network achieves state-of-the-art performance on the benchmark MSVD-QA and SVQA datasets, and demonstrates competitive results on benchmark MSRVTT-QA datasets. Our code is available at https://github.com/MMIR/DualVGR-VideoQA.


ECKPN: Explicit Class Knowledge Propagation Network for Transductive Few-shot Learning

arXiv.org Artificial Intelligence

Recently, the transductive graph-based methods have achieved great success in the few-shot classification task. However, most existing methods ignore exploring the class-level knowledge that can be easily learned by humans from just a handful of samples. In this paper, we propose an Explicit Class Knowledge Propagation Network (ECKPN), which is composed of the comparison, squeeze and calibration modules, to address this problem. Specifically, we first employ the comparison module to explore the pairwise sample relations to learn rich sample representations in the instance-level graph. Then, we squeeze the instance-level graph to generate the class-level graph, which can help obtain the class-level visual knowledge and facilitate modeling the relations of different classes. Next, the calibration module is adopted to characterize the relations of the classes explicitly to obtain the more discriminative class-level knowledge representations. Finally, we combine the class-level knowledge with the instance-level sample representations to guide the inference of the query samples. We conduct extensive experiments on four few-shot classification benchmarks, and the experimental results show that the proposed ECKPN significantly outperforms the state-of-the-art methods.