Xu, Bowen
Flying in Highly Dynamic Environments with End-to-end Learning Approach
Fan, Xiyu, Lu, Minghao, Xu, Bowen, Lu, Peng
Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
Trojans in Large Language Models of Code: A Critical Review through a Trigger-Based Taxonomy
Hussain, Aftab, Rabin, Md Rafiqul Islam, Ahmed, Toufique, Xu, Bowen, Devanbu, Premkumar, Alipour, Mohammad Amin
Large language models (LLMs) have provided a lot of exciting new capabilities in software development. However, the opaque nature of these models makes them difficult to reason about and inspect. Their opacity gives rise to potential security risks, as adversaries can train and deploy compromised models to disrupt the software development process in the victims' organization. This work presents an overview of the current state-of-the-art trojan attacks on large language models of code, with a focus on triggers -- the main design point of trojans -- with the aid of a novel unifying trigger taxonomy framework. We also aim to provide a uniform definition of the fundamental concepts in the area of trojans in Code LLMs. Finally, we draw implications of findings on how code models learn on trigger design.
Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions
Xu, Bowen, Wu, Shaoyu, Liu, Kai, Hu, Lulu
With the proliferation of large language models (LLMs), the comprehensive alignment of such models across multiple tasks has emerged as a critical area of research. Existing alignment methodologies primarily address single task, such as multi-turn dialogue, coding, mathematical problem-solving, and tool usage. However, AI-driven products that leverage language models usually necessitate a fusion of these abilities to function effectively in real-world scenarios. Moreover, the considerable computational resources required for proper alignment of LLMs underscore the need for a more robust, efficient, and encompassing approach to multi-task alignment, ensuring improved generative performance. In response to these challenges, we introduce a novel technique termed Mixture-of-Instructions (MoI), which employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models. We have also compiled a diverse set of seven benchmark datasets to rigorously evaluate the alignment efficacy of the MoI-enhanced language model. Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI. This enhanced model demonstrates significant advancements in generative capabilities across coding, mathematics, and tool use tasks.
What is Meant by AGI? On the Definition of Artificial General Intelligence
Xu, Bowen
This paper aims to establish a consensus on AGI's definition. General intelligence refers to the adaptation to open environments according to certain principles using limited resources. It emphasizes that adaptation or learning is an indispensable property of intelligence, and places the controversial part within the principles of intelligence, which can be described from different perspectives.
BAFFLE: Hiding Backdoors in Offline Reinforcement Learning Datasets
Gong, Chen, Yang, Zhou, Bai, Yunpeng, He, Junda, Shi, Jieke, Li, Kecen, Sinha, Arunesh, Xu, Bowen, Hou, Xinwen, Lo, David, Wang, Tianhao
Reinforcement learning (RL) makes an agent learn from trial-and-error experiences gathered during the interaction with the environment. Recently, offline RL has become a popular RL paradigm because it saves the interactions with environments. In offline RL, data providers share large pre-collected datasets, and others can train high-quality agents without interacting with the environments. This paradigm has demonstrated effectiveness in critical tasks like robot control, autonomous driving, etc. However, less attention is paid to investigating the security threats to the offline RL system. This paper focuses on backdoor attacks, where some perturbations are added to the data (observations) such that given normal observations, the agent takes high-rewards actions, and low-reward actions on observations injected with triggers. In this paper, we propose Baffle (Backdoor Attack for Offline Reinforcement Learning), an approach that automatically implants backdoors to RL agents by poisoning the offline RL dataset, and evaluate how different offline RL algorithms react to this attack. Our experiments conducted on four tasks and four offline RL algorithms expose a disquieting fact: none of the existing offline RL algorithms is immune to such a backdoor attack. More specifically, Baffle modifies 10\% of the datasets for four tasks (3 robotic controls and 1 autonomous driving). Agents trained on the poisoned datasets perform well in normal settings. However, when triggers are presented, the agents' performance decreases drastically by 63.2\%, 53.9\%, 64.7\%, and 47.4\% in the four tasks on average. The backdoor still persists after fine-tuning poisoned agents on clean datasets. We further show that the inserted backdoor is also hard to be detected by a popular defensive method. This paper calls attention to developing more effective protection for the open-source offline RL dataset.
A Brain-Inspired Sequence Learning Model based on a Logic
Xu, Bowen
Sequence learning is an essential aspect of intelligence. In Artificial Intelligence, sequence prediction task is usually used to test a sequence learning model. In this paper, a model of sequence learning, which is interpretable through Non-Axiomatic Logic, is designed and tested. The learning mechanism is composed of three steps, hypothesizing, revising, and recycling, which enable the model to work under the Assumption of Insufficient Knowledge and Resources. Synthetic datasets for sequence prediction task are generated to test the capacity of the model. The results show that the model works well within different levels of difficulty. In addition, since the model adopts concept-centered representation, it theoretically does not suffer from catastrophic forgetting, and the practical results also support this property. This paper shows the potential of learning sequences in a logical way.
Multi-Granularity Detector for Vulnerability Fixes
Nguyen, Truong Giang, Le-Cong, Thanh, Kang, Hong Jin, Widyasari, Ratnadira, Yang, Chengran, Zhao, Zhipeng, Xu, Bowen, Zhou, Jiayuan, Xia, Xin, Hassan, Ahmed E., Le, Xuan-Bach D., Lo, David
With the increasing reliance on Open Source Software, users are exposed to third-party library vulnerabilities. Software Composition Analysis (SCA) tools have been created to alert users of such vulnerabilities. SCA requires the identification of vulnerability-fixing commits. Prior works have proposed methods that can automatically identify such vulnerability-fixing commits. However, identifying such commits is highly challenging, as only a very small minority of commits are vulnerability fixing. Moreover, code changes can be noisy and difficult to analyze. We observe that noise can occur at different levels of detail, making it challenging to detect vulnerability fixes accurately. To address these challenges and boost the effectiveness of prior works, we propose MiDas (Multi-Granularity Detector for Vulnerability Fixes). Unique from prior works, Midas constructs different neural networks for each level of code change granularity, corresponding to commit-level, file-level, hunk-level, and line-level, following their natural organization. It then utilizes an ensemble model that combines all base models to generate the final prediction. This design allows MiDas to better handle the noisy and highly imbalanced nature of vulnerability-fixing commit data. Additionally, to reduce the human effort required to inspect code changes, we have designed an effort-aware adjustment for Midas's outputs based on commit length. The evaluation results demonstrate that MiDas outperforms the current state-of-the-art baseline in terms of AUC by 4.9% and 13.7% on Java and Python-based datasets, respectively. Furthermore, in terms of two effort-aware metrics, EffortCost@L and Popt@L, MiDas also outperforms the state-of-the-art baseline, achieving improvements of up to 28.2% and 15.9% on Java, and 60% and 51.4% on Python, respectively.
Proxy-based Super Twisting Control Algorithm for Aerial Manipulators
Hua, Zhengyu, Xu, Bowen, Xing, Li, Quan, Fengyu, Xiong, Xiaogang, Chen, Haoyao
Aerial manipulators are composed of an aerial multi-rotor that is equipped with a 6-DOF servo robot arm. To achieve precise position and attitude control during the arm's motion, it is critical for the system to have high performance control capabilities. However, the coupling effect between the multi-rotor UAVs' movement poses a challenge to the entire system's control capability. We have proposed a new proxy-based super twisting control approach for quadrotor UAVs that mitigates the disturbance caused by moving manipulators. This approach helps improve the stability of the aerial manipulation system when carrying out hovering or trajectory tracking tasks. The controller's effectiveness has been validated through numerical simulation and further tested in the Gazebo simulation environment.
The SLAM Hive Benchmarking Suite
Yang, Yuanyuan, Xu, Bowen, Li, Yinjie, Schwertfeger, Sören
Benchmarking Simultaneous Localization and Mapping (SLAM) algorithms is important to scientists and users of robotic systems alike. But through their many configuration options in hardware and software, SLAM systems feature a vast parameter space that scientists up to now were not able to explore. The proposed SLAM Hive Benchmarking Suite is able to analyze SLAM algorithms in 1000's of mapping runs, through its utilization of container technology and deployment in a cluster. This paper presents the architecture and open source implementation of SLAM Hive and compares it to existing efforts on SLAM evaluation. Furthermore, we highlight the function of SLAM Hive by exploring some open source algorithms on public datasets in terms of accuracy. We compare the algorithms against each other and evaluate how parameters effect not only accuracy but also CPU and memory usage. Through this we show that SLAM Hive can become an essential tool for proper comparisons and evaluations of SLAM algorithms and thus drive the scientific development in the research on SLAM.
A Study of Variable-Role-based Feature Enrichment in Neural Models of Code
Hussain, Aftab, Rabin, Md Rafiqul Islam, Xu, Bowen, Lo, David, Alipour, Mohammad Amin
Although deep neural models substantially reduce the overhead of feature engineering, the features readily available in the inputs might significantly impact training cost and the performance of the models. In this paper, we explore the impact of an unsuperivsed feature enrichment approach based on variable roles on the performance of neural models of code. The notion of variable roles (as introduced in the works of Sajaniemi et al. [Refs. 1,2]) has been found to help students' abilities in programming. In this paper, we investigate if this notion would improve the performance of neural models of code. To the best of our knowledge, this is the first work to investigate how Sajaniemi et al.'s concept of variable roles can affect neural models of code. In particular, we enrich a source code dataset by adding the role of individual variables in the dataset programs, and thereby conduct a study on the impact of variable role enrichment in training the Code2Seq model. In addition, we shed light on some challenges and opportunities in feature enrichment for neural code intelligence models.