Xiong, Yunyang
ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization
Liu, Zechun, Zhao, Changsheng, Huang, Hanxian, Chen, Sijia, Zhang, Jing, Zhao, Jiawei, Roy, Scott, Jin, Lisa, Xiong, Yunyang, Shi, Yangyang, Xiao, Lin, Tian, Yuandong, Soran, Bilge, Krishnamoorthi, Raghuraman, Blankevoort, Tijmen, Chandra, Vikas
The optimal bit-width for achieving the best trade-off between quantized model size and accuracy has been a subject of ongoing debate. While some advocate for 4-bit quantization, others propose that 1.58-bit offers superior results. However, the lack of a cohesive framework for different bits has left such conclusions relatively tenuous. We present ParetoQ, the first unified framework that facilitates rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization settings. Our findings reveal a notable learning transition between 2 and 3 bits: For 3-bits and above, the fine-tuned models stay close to their original pre-trained distributions, whereas for learning 2-bit networks or below, the representations change drastically. By optimizing training schemes and refining quantization functions, ParetoQ surpasses all previous methods tailored to specific bit widths. Remarkably, our ParetoQ ternary 600M-parameter model even outperforms the previous SoTA ternary 3B-parameter model in accuracy, using only one-fifth of the parameters. Extensive experimentation shows that ternary, 2-bit, and 3-bit quantization maintains comparable performance in the size-accuracy trade-off and generally exceeds 4-bit and binary quantization. Considering hardware constraints, 2-bit quantization offers promising potential for memory reduction and speedup.
Agent-as-a-Judge: Evaluate Agents with Agents
Zhuge, Mingchen, Zhao, Changsheng, Ashley, Dylan, Wang, Wenyi, Khizbullin, Dmitrii, Xiong, Yunyang, Liu, Zechun, Chang, Ernie, Krishnamoorthi, Raghuraman, Tian, Yuandong, Shi, Yangyang, Chandra, Vikas, Schmidhuber, Jürgen
Recent years have seen multimodal agentic systems move from occasionally being able to solve small toy problems to being regularly deployed for challenging real-world problems (the dream of most AI research). Yet, the current evaluation methods and the available benchmarks for agentic systems are struggling to keep up with these rapid advances, dramatically slowing true progress. We believe that the current issue with evaluating agentic systems stems from the lack of feedback during the intermediate task-solving stages for these nontraditional systems. Agentic systems think more like humans, often act step-by-step (Wooldridge, 1999) and often host very human-like symbolic communications internally to solve problems (Zhuge et al., 2023). And thus agentic systems should be evaluated like a human, with rich evaluative feedback which looks at the full thought and action trajectory; evaluating an agentic system in the traditional way is like evaluating a student using multiple-choice testing--a comparatively unreliable estimator (Park, 2010). For example, while SWE-Bench (Yang et al., 2024a) is widespread, its evaluation method, which relies solely on the final resolve rate for long-term automated repair tasks, does not effectively pinpoint what is happening within agentic systems that affects the resolve rate. On the other hand, performing a better evaluation with a human is prohibitively expensive. We instead propose that agentic systems should be used to evaluate agentic systems. Inspired by LLM-as-a-Judge (Zheng et al., 2024; Fu et al., 2023; Chen et al., 2024b), which uses LLMs to evaluate LLMs, we call this framework Agent-as-a-Judge, of which it is
MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
Liu, Zechun, Zhao, Changsheng, Iandola, Forrest, Lai, Chen, Tian, Yuandong, Fedorov, Igor, Xiong, Yunyang, Chang, Ernie, Shi, Yangyang, Krishnamoorthi, Raghuraman, Lai, Liangzhen, Chandra, Vikas
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
An Introduction to Vision-Language Modeling
Bordes, Florian, Pang, Richard Yuanzhe, Ajay, Anurag, Li, Alexander C., Bardes, Adrien, Petryk, Suzanne, Mañas, Oscar, Lin, Zhiqiu, Mahmoud, Anas, Jayaraman, Bargav, Ibrahim, Mark, Hall, Melissa, Xiong, Yunyang, Lebensold, Jonathan, Ross, Candace, Jayakumar, Srihari, Guo, Chuan, Bouchacourt, Diane, Al-Tahan, Haider, Padthe, Karthik, Sharma, Vasu, Xu, Hu, Tan, Xiaoqing Ellen, Richards, Megan, Lavoie, Samuel, Astolfi, Pietro, Hemmat, Reyhane Askari, Chen, Jun, Tirumala, Kushal, Assouel, Rim, Moayeri, Mazda, Talattof, Arjang, Chaudhuri, Kamalika, Liu, Zechun, Chen, Xilun, Garrido, Quentin, Ullrich, Karen, Agrawal, Aishwarya, Saenko, Kate, Celikyilmaz, Asli, Chandra, Vikas
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Mixture-of-Supernets: Improving Weight-Sharing Supernet Training with Architecture-Routed Mixture-of-Experts
Jawahar, Ganesh, Yang, Haichuan, Xiong, Yunyang, Liu, Zechun, Wang, Dilin, Sun, Fei, Li, Meng, Pappu, Aasish, Oguz, Barlas, Abdul-Mageed, Muhammad, Lakshmanan, Laks V. S., Krishnamoorthi, Raghuraman, Chandra, Vikas
Weight-sharing supernet has become a vital component for performance estimation in the state-of-the-art (SOTA) neural architecture search (NAS) frameworks. Although supernet can directly generate different subnetworks without retraining, there is no guarantee for the quality of these subnetworks because of weight sharing. In NLP tasks such as machine translation and pre-trained language modeling, we observe that given the same model architecture, there is a large performance gap between supernet and training from scratch. Hence, supernet cannot be directly used and retraining is necessary after finding the optimal architectures. In this work, we propose mixture-of-supernets, a generalized supernet formulation where mixture-of-experts (MoE) is adopted to enhance the expressive power of the supernet model, with negligible training overhead. In this way, different subnetworks do not share the model weights directly, but through an architecture-based routing mechanism. As a result, model weights of different subnetworks are customized towards their specific architectures and the weight generation is learned by gradient descent. Compared to existing weight-sharing supernet for NLP, our method can minimize the retraining time, greatly improving training efficiency. In addition, the proposed method achieves the SOTA performance in NAS for building fast machine translation models, yielding better latency-BLEU tradeoff compared to HAT, state-of-the-art NAS for MT. We also achieve the SOTA performance in NAS for building memory-efficient task-agnostic BERT models, outperforming NAS-BERT and AutoDistil in various model sizes.
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Zhou, Hao Henry, Xiong, Yunyang, Singh, Vikas
We provide simple schemes to build Bayesian Neural Networks (BNNs), block by block, inspired by a recent idea of computation skeletons. We show how by adjusting the types of blocks that are used within the computation skeleton, we can identify interesting relationships with Deep Gaussian Processes (DGPs), deep kernel learning (DKL), random features type approximation and other topics. We give strategies to approximate the posterior via doubly stochastic variational inference for such models which yield uncertainty estimates. We give a detailed theoretical analysis and point out extensions that may be of independent interest. As a special case, we instantiate our procedure to define a Bayesian {\em additive} Neural network -- a promising strategy to identify statistical interactions and has direct benefits for obtaining interpretable models.