Goto

Collaborating Authors

 Xiong, Yun


Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models

arXiv.org Artificial Intelligence

Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling. However, real-world temporal graphs often possess rich textual information, giving rise to temporal text-attributed graphs (TTAGs). Such combination of dynamic text semantics and evolving graph structures introduces heightened complexity. Existing TGNNs embed texts statically and rely heavily on encoding mechanisms that biasedly prioritize structural information, overlooking the temporal evolution of text semantics and the essential interplay between semantics and structures for synergistic reinforcement. To tackle these issues, we present \textbf{{Cross}}, a novel framework that seamlessly extends existing TGNNs for TTAG modeling. The key idea is to employ the advanced large language models (LLMs) to extract the dynamic semantics in text space and then generate expressive representations unifying both semantics and structures. Specifically, we propose a Temporal Semantics Extractor in the {Cross} framework, which empowers the LLM to offer the temporal semantic understanding of node's evolving contexts of textual neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the Semantic-structural Co-encoder, which collaborates with the above Extractor for synthesizing illuminating representations by jointly considering both semantic and structural information while encouraging their mutual reinforcement. Extensive experimental results on four public datasets and one practical industrial dataset demonstrate {Cross}'s significant effectiveness and robustness.


U-NIAH: Unified RAG and LLM Evaluation for Long Context Needle-In-A-Haystack

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have expanded their context windows to unprecedented lengths, sparking debates about the necessity of Retrieval-Augmented Generation (RAG). To address the fragmented evaluation paradigms and limited cases in existing Needle-in-a-Haystack (NIAH), this paper introduces U-NIAH, a unified framework that systematically compares LLMs and RAG methods in controlled long context settings. Our framework extends beyond traditional NIAH by incorporating multi-needle, long-needle, and needle-in-needle configurations, along with different retrieval settings, while leveraging the synthetic Starlight Academy dataset-a fictional magical universe-to eliminate biases from pre-trained knowledge. Through extensive experiments, we investigate three research questions: (1) performance trade-offs between LLMs and RAG, (2) error patterns in RAG, and (3) RAG's limitations in complex settings. Our findings show that RAG significantly enhances smaller LLMs by mitigating the "lost-in-the-middle" effect and improving robustness, achieving an 82.58% win-rate over LLMs. However, we observe that retrieval noise and reverse chunk ordering degrade performance, while surprisingly, advanced reasoning LLMs exhibit reduced RAG compatibility due to sensitivity to semantic distractors. We identify typical error patterns including omission due to noise, hallucination under high noise critical condition, and self-doubt behaviors. Our work not only highlights the complementary roles of RAG and LLMs, but also provides actionable insights for optimizing deployments. Code: https://github.com/Tongji-KGLLM/U-NIAH.


Enhancing Masked Time-Series Modeling via Dropping Patches

arXiv.org Machine Learning

This paper explores how to enhance existing masked time-series modeling by randomly dropping sub-sequence level patches of time series. On this basis, a simple yet effective method named DropPatch is proposed, which has two remarkable advantages: 1) It improves the pre-training efficiency by a square-level advantage; 2) It provides additional advantages for modeling in scenarios such as in-domain, cross-domain, few-shot learning and cold start. This paper conducts comprehensive experiments to verify the effectiveness of the method and analyze its internal mechanism. Empirically, DropPatch strengthens the attention mechanism, reduces information redundancy and serves as an efficient means of data augmentation. Theoretically, it is proved that DropPatch slows down the rate at which the Transformer representations collapse into the rank-1 linear subspace by randomly dropping patches, thus optimizing the quality of the learned representations


Can Graph Learning Improve Task Planning?

arXiv.org Artificial Intelligence

Task planning is emerging as an important research topic alongside the development of large language models (LLMs). It aims to break down complex user requests into solvable sub-tasks, thereby fulfilling the original requests. In this context, the sub-tasks can be naturally viewed as a graph, where the nodes represent the sub-tasks, and the edges denote the dependencies among them. Consequently, task planning is a decision-making problem that involves selecting a connected path or subgraph within the corresponding graph and invoking it. In this paper, we explore graph learning-based methods for task planning, a direction that is orthogonal to the prevalent focus on prompt design. Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs, which is adeptly addressed by graph neural networks (GNNs). This theoretical insight led us to integrate GNNs with LLMs to enhance overall performance. Extensive experiments demonstrate that GNN-based methods surpass existing solutions even without training, and minimal training can further enhance their performance. Additionally, our approach complements prompt engineering and fine-tuning techniques, with performance further enhanced by improved prompts or a fine-tuned model.


Advanced Drug Interaction Event Prediction

arXiv.org Artificial Intelligence

Predicting drug-drug interaction adverse events, so-called DDI events, is increasingly valuable as it facilitates the study of mechanisms underlying drug use or adverse reactions. Existing models often neglect the distinctive characteristics of individual event classes when integrating multi-source features, which contributes to systematic unfairness when dealing with highly imbalanced event samples. Moreover, the limited capacity of these models to abstract the unique attributes of each event subclass considerably hampers their application in predicting rare drug-drug interaction events with a limited sample size. Reducing dataset bias and abstracting event subclass characteristics are two unresolved challenges. Recently, prompt tuning with frozen pre-trained graph models, namely "pre-train, prompt, fine-tune" strategy, has demonstrated impressive performance in few-shot tasks. Motivated by this, we propose an advanced method as a solution to address these aforementioned challenges. Specifically, our proposed approach entails a hierarchical pre-training task that aims to capture crucial aspects of drug molecular structure and intermolecular interactions while effectively mitigating implicit dataset bias within the node embeddings. Furthermore, we construct a prototypical graph by strategically sampling data from distinct event types and design subgraph prompts utilizing pre-trained node features. Through comprehensive benchmark experiments, we validate the efficacy of our subgraph prompts in accurately representing event classes and achieve exemplary results in both overall and subclass prediction tasks.


Beyond the Known: Novel Class Discovery for Open-world Graph Learning

arXiv.org Artificial Intelligence

Node classification on graphs is of great importance in many applications. Due to the limited labeling capability and evolution in real-world open scenarios, novel classes can emerge on unlabeled testing nodes. However, little attention has been paid to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated by edges, which makes their representations indistinguishable when applying message passing GNNs. Furthermore, the novel classes lack labeling information to guide the learning process. In this paper, we propose a novel method Open-world gRAph neuraL network (ORAL) to tackle these challenges. ORAL first detects correlations between classes through semi-supervised prototypical learning. Inter-class correlations are subsequently eliminated by the prototypical attention network, leading to distinctive representations for different classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the effectiveness of our proposed method.


Prompt Learning on Temporal Interaction Graphs

arXiv.org Artificial Intelligence

Temporal Interaction Graphs (TIGs) are widely utilized to represent real-world systems. To facilitate representation learning on TIGs, researchers have proposed a series of TIG models. However, these models are still facing two tough gaps between the pre-training and downstream predictions in their ``pre-train, predict'' training paradigm. First, the temporal discrepancy between the pre-training and inference data severely undermines the models' applicability in distant future predictions on the dynamically evolving data. Second, the semantic divergence between pretext and downstream tasks hinders their practical applications, as they struggle to align with their learning and prediction capabilities across application scenarios. Recently, the ``pre-train, prompt'' paradigm has emerged as a lightweight mechanism for model generalization. Applying this paradigm is a potential solution to solve the aforementioned challenges. However, the adaptation of this paradigm to TIGs is not straightforward. The application of prompting in static graph contexts falls short in temporal settings due to a lack of consideration for time-sensitive dynamics and a deficiency in expressive power. To address this issue, we introduce Temporal Interaction Graph Prompting (TIGPrompt), a versatile framework that seamlessly integrates with TIG models, bridging both the temporal and semantic gaps. In detail, we propose a temporal prompt generator to offer temporally-aware prompts for different tasks. These prompts stand out for their minimalistic design, relying solely on the tuning of the prompt generator with very little supervision data. To cater to varying computational resource demands, we propose an extended ``pre-train, prompt-based fine-tune'' paradigm, offering greater flexibility. Through extensive experiments, the TIGPrompt demonstrates the SOTA performance and remarkable efficiency advantages.


Retrieval-Augmented Generation for Large Language Models: A Survey

arXiv.org Artificial Intelligence

Large Language Models (LLMs) demonstrate significant capabilities but face challenges such as hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases. This enhances the accuracy and credibility of the models, particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information. RAG synergistically merges LLMs' intrinsic knowledge with the vast, dynamic repositories of external databases. This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG. It meticulously scrutinizes the tripartite foundation of RAG frameworks, which includes the retrieval , the generation and the augmentation techniques. The paper highlights the state-of-the-art technologies embedded in each of these critical components, providing a profound understanding of the advancements in RAG systems. Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most up-to-date evaluation framework. In conclusion, the paper delineates prospective avenues for research, including the identification of challenges, the expansion of multi-modalities, and the progression of the RAG infrastructure and its ecosystem.


Graph Prompt Learning: A Comprehensive Survey and Beyond

arXiv.org Artificial Intelligence

Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by \url{https://github.com/WxxShirley/Awesome-Graph-Prompt}, and \url{https://github.com/sheldonresearch/ProG}, respectively.


Joint Learning of Local and Global Features for Aspect-based Sentiment Classification

arXiv.org Artificial Intelligence

Aspect-based sentiment classification (ASC) aims to judge the sentiment polarity conveyed by the given aspect term in a sentence. The sentiment polarity is not only determined by the local context but also related to the words far away from the given aspect term. Most recent efforts related to the attention-based models can not sufficiently distinguish which words they should pay more attention to in some cases. Meanwhile, graph-based models are coming into ASC to encode syntactic dependency tree information. But these models do not fully leverage syntactic dependency trees as they neglect to incorporate dependency relation tag information into representation learning effectively. In this paper, we address these problems by effectively modeling the local and global features. Firstly, we design a local encoder containing: a Gaussian mask layer and a covariance self-attention layer. The Gaussian mask layer tends to adjust the receptive field around aspect terms adaptively to deemphasize the effects of unrelated words and pay more attention to local information. The covariance self-attention layer can distinguish the attention weights of different words more obviously. Furthermore, we propose a dual-level graph attention network as a global encoder by fully employing dependency tag information to capture long-distance information effectively. Our model achieves state-of-the-art performance on both SemEval 2014 and Twitter datasets.