Goto

Collaborating Authors

 Xiong, Xinye


Accurate and Definite Mutational Effect Prediction with Lightweight Equivariant Graph Neural Networks

arXiv.org Artificial Intelligence

Directed evolution as a widely-used engineering strategy faces obstacles in finding desired mutants from the massive size of candidate modifications. While deep learning methods learn protein contexts to establish feasible searching space, many existing models are computationally demanding and fail to predict how specific mutational tests will affect a protein's sequence or function. This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins and recommends practical higher-order mutations exclusive to the user-specified protein and function of interest. Our method enables continuous improvement of the inference model by limited computational resources and a few hundred mutational training samples, resulting in accurate prediction of variant effects that exhibit near-perfect correlation with the ground truth across deep mutational scanning assays of 19 proteins. With its affordability and applicability to both computer scientists and biochemical laboratories, our solution offers a wide range of benefits that make it an ideal choice for the community.


Graph Representation Learning for Interactive Biomolecule Systems

arXiv.org Artificial Intelligence

Advances in deep learning models have revolutionized the study of biomolecule systems and their mechanisms. Graph representation learning, in particular, is important for accurately capturing the geometric information of biomolecules at different levels. This paper presents a comprehensive review of the methodologies used to represent biological molecules and systems as computer-recognizable objects, such as sequences, graphs, and surfaces. Moreover, it examines how geometric deep learning models, with an emphasis on graph-based techniques, can analyze biomolecule data to enable drug discovery, protein characterization, and biological system analysis. The study concludes with an overview of the current state of the field, highlighting the challenges that exist and the potential future research directions.