Xiong, Tao
Cyber Physical System Information Collection: Robot Location and Navigation Method Based on QR Code
Li, Hongwei, Xiong, Tao
In this paper, we propose a method to estimate the exact location of a camera in a cyber-physical system using the exact geographic coordinates of four feature points stored in QR codes(Quick response codes) and the pixel coordinates of four feature points analyzed from the QR code images taken by the camera. Firstly, the P4P(Perspective 4 Points) algorithm is designed to uniquely determine the initial pose estimation value of the QR coordinate system relative to the camera coordinate system by using the four feature points of the selected QR code. In the second step, the manifold gradient optimization algorithm is designed. The rotation matrix and displacement vector are taken as the initial values of iteration, and the iterative optimization is carried out to improve the positioning accuracy and obtain the rotation matrix and displacement vector with higher accuracy. The third step is to convert the pose of the QR coordinate system with respect to the camera coordinate system to the pose of the AGV(Automated Guided Vehicle) with respect to the world coordinate system. Finally, the performance of manifold gradient optimization algorithm and P4P analytical algorithm are simulated and compared under the same conditions.One can see that the performance of the manifold gradient optimization algorithm proposed in this paper is much better than that of the P4P analytic algorithm when the signal-to-noise ratio is small.With the increase of the signal-to-noise ratio,the performance of the P4P analytic algorithm approaches that of the manifold gradient optimization algorithm.when the noise is same,the performance of manifold gradient optimization algorithm is better when there are more feature points.
SHORING: Design Provable Conditional High-Order Interaction Network via Symbolic Testing
Li, Hui, Fu, Xing, Wu, Ruofan, Xu, Jinyu, Xiao, Kai, Chang, Xiaofu, Wang, Weiqiang, Chen, Shuai, Shi, Leilei, Xiong, Tao, Qi, Yuan
Deep learning provides a promising way to extract effective representations from raw data in an end-to-end fashion and has proven its effectiveness in various domains such as computer vision, natural language processing, etc. However, in domains such as content/product recommendation and risk management, where sequence of event data is the most used raw data form and experts derived features are more commonly used, deep learning models struggle to dominate the game. In this paper, we propose a symbolic testing framework that helps to answer the question of what kinds of expert-derived features could be learned by a neural network. Inspired by this testing framework, we introduce an efficient architecture named SHORING, which contains two components: \textit{event network} and \textit{sequence network}. The \textit{event} network learns arbitrarily yet efficiently high-order \textit{event-level} embeddings via a provable reparameterization trick, the \textit{sequence} network aggregates from sequence of \textit{event-level} embeddings. We argue that SHORING is capable of learning certain standard symbolic expressions which the standard multi-head self-attention network fails to learn, and conduct comprehensive experiments and ablation studies on four synthetic datasets and three real-world datasets. The results show that SHORING empirically outperforms the state-of-the-art methods.
Sensitivity based Neural Networks Explanations
Horel, Enguerrand, Mison, Virgile, Xiong, Tao, Giesecke, Kay, Mangu, Lidia
Although neural networks can achieve very high predictive performance on various different tasks such as image recognition or natural language processing, they are often considered as opaque "black boxes". The difficulty of interpreting the predictions of a neural network often prevents its use in fields where explainability is important, such as the financial industry where regulators and auditors often insist on this aspect. In this paper, we present a way to assess the relative input features importance of a neural network based on the sensitivity of the model output with respect to its input. This method has the advantage of being fast to compute, it can provide both global and local levels of explanations and is applicable for many types of neural network architectures. We illustrate the performance of this method on both synthetic and real data and compare it with other interpretation techniques. This method is implemented into an open-source Python package that allows its users to easily generate and visualize explanations for their neural networks.
A Joint Optimization Model for Image Summarization Based on Image Content and Tags
Yu, Hongliang (Peking University) | Deng, Zhi-Hong (Peking University) | Yang, Yunlun (Peking University) | Xiong, Tao (The Johns Hopkins University)
As an effective technology for navigating a large number of images, image summarization is becoming a promising task with the rapid development of image sharing sites and social networks. Most existing summarization approaches use the visual-based features for image representation without considering tag information.In this paper, we propose a novel framework, named JOINT, which employs both image content and tag information to summarize images. Our model generates the summary images which can best reconstruct the original collection. Based on the assumption that an image with representative content should also have typical tags, we introduce a similarity-inducing regularizer to our model. Furthermore, we impose the lasso penalty on the objective function to yield a concise summary set. Extensive experiments demonstrate our model outperforms the state-of-the-art approaches.
Multi-Step-Ahead Time Series Prediction using Multiple-Output Support Vector Regression
Bao, Yukun, Xiong, Tao, Hu, Zhongyi
Accurate time series prediction over long future horizons is challenging and of great interest to both practitioners and academics. As a well-known intelligent algorithm, the standard formulation of Support Vector Regression (SVR) could be taken for multi-step-ahead time series prediction, only relying either on iterated strategy or direct strategy. This study proposes a novel multiple-step-ahead time series prediction approach which employs multiple-output support vector regression (M-SVR) with multiple-input multiple-output (MIMO) prediction strategy. In addition, the rank of three leading prediction strategies with SVR is comparatively examined, providing practical implications on the selection of the prediction strategy for multi-step-ahead forecasting while taking SVR as modeling technique. The proposed approach is validated with the simulated and real datasets. The quantitative and comprehensive assessments are performed on the basis of the prediction accuracy and computational cost. The results indicate that: 1) the M-SVR using MIMO strategy achieves the best accurate forecasts with accredited computational load, 2) the standard SVR using direct strategy achieves the second best accurate forecasts, but with the most expensive computational cost, and 3) the standard SVR using iterated strategy is the worst in terms of prediction accuracy, but with the least computational cost.
A PSO and Pattern Search based Memetic Algorithm for SVMs Parameters Optimization
Bao, Yukun, Hu, Zhongyi, Xiong, Tao
Addressing the issue of SVMs parameters optimization, this study proposes an efficient memetic algorithm based on Particle Swarm Optimization algorithm (PSO) and Pattern Search (PS). In the proposed memetic algorithm, PSO is responsible for exploration of the search space and the detection of the potential regions with optimum solutions, while pattern search (PS) is used to produce an effective exploitation on the potential regions obtained by PSO. Moreover, a novel probabilistic selection strategy is proposed to select the appropriate individuals among the current population to undergo local refinement, keeping a well balance between exploration and exploitation. Experimental results confirm that the local refinement with PS and our proposed selection strategy are effective, and finally demonstrate effectiveness and robustness of the proposed PSO-PS based MA for SVMs parameters optimization.
Beyond One-Step-Ahead Forecasting: Evaluation of Alternative Multi-Step-Ahead Forecasting Models for Crude Oil Prices
Xiong, Tao, Bao, Yukun, Hu, Zhongyi
An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), which is capable of capturing the complex dynamic of crude oil prices. Three commonly used multi-step-ahead prediction strategies proposed in the literature, including iterated strategy, direct strategy, and MIMO (multiple-input multiple-output) strategy, are examined and compared, and practical considerations for the selection of a prediction strategy for multi-step-ahead forecasting relating to crude oil prices are identified. The weekly data from the WTI (West Texas Intermediate) crude oil spot price are used to compare the performance of the alternative models under the EMD-SBM-FNN modeling framework with selected counterparts. The quantitative and comprehensive assessments are performed on the basis of prediction accuracy and computational cost. The results obtained in this study indicate that the proposed EMD-SBM-FNN model using the MIMO strategy is the best in terms of prediction accuracy with accredited computational load.
PSO-MISMO Modeling Strategy for Multi-Step-Ahead Time Series Prediction
Bao, Yukun, Xiong, Tao, Hu, Zhongyi
Multi-step-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multi-step-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this study proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.
Efficient Kernel Discriminant Analysis via QR Decomposition
Xiong, Tao, Ye, Jieping, Li, Qi, Janardan, Ravi, Cherkassky, Vladimir
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications such as face recognition. Recently, a novel LDA algorithm based on QR Decomposition, namely LDA/QR, has been proposed, which is competitive in terms of classification accuracy with other LDA algorithms, but it has much lower costs in time and space. However, LDA/QR is based on linear projection, which may not be suitable for data with nonlinear structure. This paper first proposes an algorithm called KDA/QR, which extends the LDA/QR algorithm to deal with nonlinear data by using the kernel operator. Then an efficient approximation of KDA/QR called AKDA/QR is proposed. Experiments on face image data show that the classification accuracy of both KDA/QR and AKDA/QR are competitive with Generalized Discriminant Analysis (GDA), a general kernel discriminant analysis algorithm, while AKDA/QR has much lower time and space costs.