Xiong, Siheng
Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model
Xiong, Siheng, Payani, Ali, Yang, Yuan, Fekri, Faramarz
Enhancing the reasoning capabilities of large language models (LLMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making. Humans excel at these tasks by leveraging deliberate planning with an internal world model to simulate the potential outcomes of various actions. Inspired by this, we propose a novel multi-step reasoning framework for LLMs, referred to as Structure-aware Planning with Accurate World Model (SWAP). Unlike previous approaches that rely solely on Chain-of-Thought (CoT) reasoning in natural language, SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps. Moreover, SWAP overcomes the challenge of accurate world state predictions in complex reasoning tasks by introducing a Generator-Discriminator architecture, which enables more reliable world modeling. Specifically, the generator predicts the next state, and the discriminator ensures alignment with the logical consistency required by the problem context. SWAP also encourages the policy model to explore a broad range of potential actions to prevent premature convergence. By resolving the bottlenecks of generation diversity for both actions and states using diversity-based modeling (DBM) and improving discrimination accuracy through contrastive ranking (CR), SWAP significantly enhances the reasoning performance of LLMs. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP achieves substantial improvements over the baselines and consistently outperforms existing methods.
Improving Causal Reasoning in Large Language Models: A Survey
Yu, Longxuan, Chen, Delin, Xiong, Siheng, Wu, Qingyang, Liu, Qingzhen, Li, Dawei, Chen, Zhikai, Liu, Xiaoze, Pan, Liangming
Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world. While large language models (LLMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain, often falling short in tasks requiring a deep understanding of causality. In this survey, we provide a comprehensive review of research aimed at enhancing LLMs for causal reasoning. We categorize existing methods based on the role of LLMs: either as reasoning engines or as helpers providing knowledge or data to traditional CR methods, followed by a detailed discussion of the methodologies in each category. We then evaluate the performance of LLMs on various causal reasoning tasks, providing key findings and in-depth analysis. Finally, we provide insights from current studies and highlight promising directions for future research. We aim for this work to serve as a comprehensive resource, fostering further advancements in causal reasoning with LLMs. Resources are available at https://github.com/chendl02/Awesome-LLM-causal-reasoning.
Temporal Inductive Logic Reasoning over Hypergraphs
Yang, Yuan, Xiong, Siheng, Payani, Ali, Kerce, James C, Fekri, Faramarz
Inductive logic reasoning is a fundamental task in graph analysis, which aims to generalize patterns from data. This task has been extensively studied for traditional graph representations, such as knowledge graphs (KGs), using techniques like inductive logic programming (ILP). Existing ILP methods assume learning from KGs with static facts and binary relations. Beyond KGs, graph structures are widely present in other applications such as procedural instructions, scene graphs, and program executions. While ILP is beneficial for these applications, applying it to those graphs is nontrivial: they are more complex than KGs, which usually involve timestamps and n-ary relations, effectively a type of hypergraph with temporal events. In this work, we propose temporal inductive logic reasoning (TILR), an ILP method that reasons on temporal hypergraphs. To enable hypergraph reasoning, we introduce the multi-start random B-walk, a novel graph traversal method for hypergraphs. By combining it with a path-consistency algorithm, TILR learns logic rules by generalizing from both temporal and relational data. To address the lack of hypergraph benchmarks, we create and release two temporal hypergraph datasets: YouCook2-HG and nuScenes-HG. Experiments on these benchmarks demonstrate that TILR achieves superior reasoning capability over various strong baselines.
TEILP: Time Prediction over Knowledge Graphs via Logical Reasoning
Xiong, Siheng, Yang, Yuan, Payani, Ali, Kerce, James C, Fekri, Faramarz
Conventional embedding-based models approach event time prediction in temporal knowledge graphs (TKGs) as a ranking problem. However, they often fall short in capturing essential temporal relationships such as order and distance. In this paper, we propose TEILP, a logical reasoning framework that naturally integrates such temporal elements into knowledge graph predictions. We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph. The TEKG equips us to develop a differentiable random walk approach to time prediction. Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction. We compare TEILP with state-of-the-art methods on five benchmark datasets. We show that our model achieves a significant improvement over baselines while providing interpretable explanations. In particular, we consider several scenarios where training samples are limited, event types are imbalanced, and forecasting the time of future events based on only past events is desired. In all these cases, TEILP outperforms state-of-the-art methods in terms of robustness.
Large Language Models Can Learn Temporal Reasoning
Xiong, Siheng, Payani, Ali, Kompella, Ramana, Fekri, Faramarz
Large language models (LLMs) learn temporal concepts from the co-occurrence of related tokens in a sequence. Compared with conventional text generation, temporal reasoning, which reaches a conclusion based on mathematical, logical and commonsense knowledge, is more challenging. In this paper, we propose TempGraph-LLM, a new paradigm towards text-based temporal reasoning. To be specific, we first teach LLMs to translate the context into a temporal graph. A synthetic dataset, which is fully controllable and requires minimal supervision, is constructed for pre-training on this task. We prove in experiments that LLMs benefit from the pre-training on other tasks. On top of that, we guide LLMs to perform symbolic reasoning with the strategies of Chain of Thoughts (CoTs) bootstrapping and special data augmentation. We observe that CoTs with symbolic reasoning bring more consistent and reliable results than those using free text.
Harnessing the Power of Large Language Models for Natural Language to First-Order Logic Translation
Yang, Yuan, Xiong, Siheng, Payani, Ali, Shareghi, Ehsan, Fekri, Faramarz
Translating natural language sentences to first-order logic (NL-FOL translation) is a longstanding challenge in the NLP and formal logic literature. This paper introduces LogicLLaMA, a LLaMA-7B model fine-tuned for NL-FOL translation using LoRA on a single GPU. LogicLLaMA is capable of directly translating natural language into FOL rules, which outperforms GPT-3.5. LogicLLaMA is also equipped to correct FOL rules predicted by GPT-3.5, and can achieve similar performance as GPT-4 with a fraction of the cost. This correction ability was achieved by a novel supervised fine-tuning (SFT) + reinforcement learning with human feedback (RLHF) framework, which initially trains on synthetically perturbed NL-FOL pairs to encourage chain-of-thought reasoning and then fine-tunes with RLHF on GPT-3.5 outputs using a FOL verifier as the reward model. To train LogicLLaMA, we present MALLS (large language $\textbf{M}$odel gener$\textbf{A}$ted N$\textbf{L}$-FO$\textbf{L}$ pair$\textbf{S}$), a dataset of 34K high-quality and diverse sentence-level NL-FOL pairs collected from GPT-4. The dataset was created by implementing a pipeline that prompts GPT-4 for pairs, and dynamically adjusts the prompts to ensure the collection of pairs with rich and diverse contexts at different levels of complexity, and verifies the validity of the generated FOL rules. Codes, weights, and data are available at $\href{https://github.com/gblackout/LogicLLaMA}{{\small \text{https://github.com/gblackout/LogicLLaMA}}}$.