Goto

Collaborating Authors

 Xiong, Liang


Rankitect: Ranking Architecture Search Battling World-class Engineers at Meta Scale

arXiv.org Artificial Intelligence

Neural Architecture Search (NAS) has demonstrated its efficacy in computer vision and potential for ranking systems. However, prior work focused on academic problems, which are evaluated at small scale under well-controlled fixed baselines. In industry system, such as ranking system in Meta, it is unclear whether NAS algorithms from the literature can outperform production baselines because of: (1) scale - Meta ranking systems serve billions of users, (2) strong baselines - the baselines are production models optimized by hundreds to thousands of world-class engineers for years since the rise of deep learning, (3) dynamic baselines - engineers may have established new and stronger baselines during NAS search, and (4) efficiency - the search pipeline must yield results quickly in alignment with the productionization life cycle. In this paper, we present Rankitect, a NAS software framework for ranking systems at Meta. Rankitect seeks to build brand new architectures by composing low level building blocks from scratch. Rankitect implements and improves state-of-the-art (SOTA) NAS methods for comprehensive and fair comparison under the same search space, including sampling-based NAS, one-shot NAS, and Differentiable NAS (DNAS). We evaluate Rankitect by comparing to multiple production ranking models at Meta. We find that Rankitect can discover new models from scratch achieving competitive tradeoff between Normalized Entropy loss and FLOPs. When utilizing search space designed by engineers, Rankitect can generate better models than engineers, achieving positive offline evaluation and online A/B test at Meta scale.


NASRec: Weight Sharing Neural Architecture Search for Recommender Systems

arXiv.org Artificial Intelligence

The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available at https://github.com/facebookresearch/NasRec.


Time-based Sequence Model for Personalization and Recommendation Systems

arXiv.org Machine Learning

Recommendation systems play an important role in many e-commerce applications as well as search and ranking services [6, 15, 21, 26, 30, 31, 41, 48]. There are two main strategies to perform recommendations: content and collaborative filtering. In content filtering the user creates a profile based on its interest, while human experts create a profile for the product. An algorithm matches the two profiles and recommends the closest matches to the user. For example, this approach is taken by the Pandora Music Genome Project [29]. In collaborative filtering, the recommendations are based only on user past behavior from which the future behavior is derived. The advantage of this approach is that it requires no external information and is not domain specific. The challenge is that in the beginning very few user-item interactions are available. For instance, this cold start problem is addressed by Netflix by asking the user for a few favorite movies when creating their profile for the first time [27].


Kernels on Sample Sets via Nonparametric Divergence Estimates

arXiv.org Machine Learning

Most machine learning algorithms, such as classification or regression, treat the individual data point as the object of interest. Here we consider extending machine learning algorithms to operate on groups of data points. We suggest treating a group of data points as an i.i.d. sample set from an underlying feature distribution for that group. Our approach employs kernel machines with a kernel on i.i.d. sample sets of vectors. We define certain kernel functions on pairs of distributions, and then use a nonparametric estimator to consistently estimate those functions based on sample sets. The projection of the estimated Gram matrix to the cone of symmetric positive semi-definite matrices enables us to use kernel machines for classification, regression, anomaly detection, and low-dimensional embedding in the space of distributions. We present several numerical experiments both on real and simulated datasets to demonstrate the advantages of our new approach.


Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions

arXiv.org Machine Learning

Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets.


Group Anomaly Detection using Flexible Genre Models

Neural Information Processing Systems

An important task in exploring and analyzing real-world data sets is to detect unusual and interesting phenomena. In this paper, we study the group anomaly detection problem. Unlike traditional anomaly detection research that focuses on data points, our goal is to discover anomalous aggregated behaviors of groups of points. For this purpose, we propose the Flexible Genre Model (FGM). FGM is designed to characterize data groups at both the point level and the group level so as to detect various types of group anomalies. We evaluate the effectiveness of FGM on both synthetic and real data sets including images and turbulence data, and show that it is superior to existing approaches in detecting group anomalies.