Goto

Collaborating Authors

 Xiong, Huan


Effectiveness Assessment of Recent Large Vision-Language Models

arXiv.org Artificial Intelligence

The advent of large vision-language models (LVLMs) represents a remarkable advance in the quest for artificial general intelligence. However, the model's effectiveness in both specialized and general tasks warrants further investigation. This paper endeavors to evaluate the competency of popular LVLMs in specialized and general tasks, respectively, aiming to offer a comprehensive understanding of these novel models. To gauge their effectiveness in specialized tasks, we employ six challenging tasks in three different application scenarios: natural, healthcare, and industrial. These six tasks include salient/camouflaged/transparent object detection, as well as polyp detection, skin lesion detection, and industrial anomaly detection. We examine the performance of three recent open-source LVLMs, including MiniGPT-v2, LLaVA-1.5, and Shikra, on both visual recognition and localization in these tasks. Moreover, we conduct empirical investigations utilizing the aforementioned LVLMs together with GPT-4V, assessing their multi-modal understanding capabilities in general tasks including object counting, absurd question answering, affordance reasoning, attribute recognition, and spatial relation reasoning. Our investigations reveal that these LVLMs demonstrate limited proficiency not only in specialized tasks but also in general tasks. We delve deep into this inadequacy and uncover several potential factors, including limited cognition in specialized tasks, object hallucination, text-to-image interference, and decreased robustness in complex problems. We hope that this study can provide useful insights for the future development of LVLMs, helping researchers improve LVLMs for both general and specialized applications.


Continuous Spiking Graph Neural Networks

arXiv.org Artificial Intelligence

Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs) by introducing continuous dynamics. They typically draw inspiration from diffusion-based methods to introduce a novel propagation scheme, which is analyzed using ordinary differential equations (ODE). However, the implementation of CGNNs requires significant computational power, making them challenging to deploy on battery-powered devices. Inspired by recent spiking neural networks (SNNs), which emulate a biological inference process and provide an energy-efficient neural architecture, we incorporate the SNNs with CGNNs in a unified framework, named Continuous Spiking Graph Neural Networks (COS-GNN). We employ SNNs for graph node representation at each time step, which are further integrated into the ODE process along with time. To enhance information preservation and mitigate information loss in SNNs, we introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation. Moreover, we provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes. Experimental results on graph-based learning tasks demonstrate the effectiveness of the proposed COS-GNN over competitive baselines.


Dynamic Spiking Graph Neural Networks

arXiv.org Artificial Intelligence

The integration of Spiking Neural Networks (SNNs) and Graph Neural Networks (GNNs) is gradually attracting attention due to the low power consumption and high efficiency in processing the non-Euclidean data represented by graphs. However, as a common problem, dynamic graph representation learning faces challenges such as high complexity and large memory overheads. Current work often uses SNNs instead of Recurrent Neural Networks (RNNs) by using binary features instead of continuous ones for efficient training, which would overlooks graph structure information and leads to the loss of details during propagation. Additionally, optimizing dynamic spiking models typically requires propagation of information across time steps, which increases memory requirements. To address these challenges, we present a framework named \underline{Dy}namic \underline{S}p\underline{i}king \underline{G}raph \underline{N}eural Networks (\method{}). To mitigate the information loss problem, \method{} propagates early-layer information directly to the last layer for information compensation. To accommodate the memory requirements, we apply the implicit differentiation on the equilibrium state, which does not rely on the exact reverse of the forward computation. While traditional implicit differentiation methods are usually used for static situations, \method{} extends it to the dynamic graph setting. Extensive experiments on three large-scale real-world dynamic graph datasets validate the effectiveness of \method{} on dynamic node classification tasks with lower computational costs.


On the Intrinsic Structures of Spiking Neural Networks

arXiv.org Artificial Intelligence

Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data. The performance of SNNs hinges not only on selecting an apposite architecture and fine-tuning connection weights, similar to conventional ANNs, but also on the meticulous configuration of intrinsic structures within spiking computations. However, there has been a dearth of comprehensive studies examining the impact of intrinsic structures. Consequently, developers often find it challenging to apply a standardized configuration of SNNs across diverse datasets or tasks. This work delves deep into the intrinsic structures of SNNs. Initially, we unveil two pivotal components of intrinsic structures: the integration operation and firing-reset mechanism, by elucidating their influence on the expressivity of SNNs. Furthermore, we draw two key conclusions: the membrane time hyper-parameter is intimately linked to the eigenvalues of the integration operation, dictating the functional topology of spiking dynamics, and various hyper-parameters of the firing-reset mechanism govern the overall firing capacity of an SNN, mitigating the injection ratio or sampling density of input data. These findings elucidate why the efficacy of SNNs hinges heavily on the configuration of intrinsic structures and lead to a recommendation that enhancing the adaptability of these structures contributes to improving the overall performance and applicability of SNNs. Inspired by this recognition, we propose two feasible approaches to enhance SNN learning. These involve leveraging self-connection architectures and employing stochastic spiking neurons to augment the adaptability of the integration operation and firing-reset mechanism, respectively. We verify the effectiveness of the proposed methods from perspectives of theory and practice.


Deep ReLU Networks Have Surprisingly Simple Polytopes

arXiv.org Artificial Intelligence

A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization of polytopes. To upgrade the characterization to a new level, here we propose to study the shapes of polytopes via the number of simplices obtained by triangulating the polytope. Then, by computing and analyzing the histogram of simplices across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes theoretically can be rather diverse and complicated. This finding can be appreciated as a novel implicit bias. Next, we use nontrivial combinatorial derivation to theoretically explain why adding depth does not create a more complicated polytope by bounding the average number of faces of polytopes with a function of the dimensionality. Our results concretely reveal what kind of simple functions a network learns and its space partition property. Also, by characterizing the shape of polytopes, the number of simplices be a leverage for other problems, \textit{e.g.}, serving as a generic functional complexity measure to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.


Rethink Depth Separation with Intra-layer Links

arXiv.org Artificial Intelligence

The depth separation theory is nowadays widely accepted as an effective explanation for the power of depth, which consists of two parts: i) there exists a function representable by a deep network; ii) such a function cannot be represented by a shallow network whose width is lower than a threshold. However, this theory is established for feedforward networks. Few studies, if not none, considered the depth separation theory in the context of shortcuts which are the most common network types in solving real-world problems. Here, we find that adding intra-layer links can modify the depth separation theory. First, we report that adding intra-layer links can greatly improve a network's representation capability through bound estimation, explicit construction, and functional space analysis. Then, we modify the depth separation theory by showing that a shallow network with intra-layer links does not need to go as wide as before to express some hard functions constructed by a deep network. Such functions include the renowned "sawtooth" functions. Moreover, the saving of width is up to linear. Our results supplement the existing depth separation theory by examining its limit in the shortcut domain. Also, the mechanism we identify can be translated into analyzing the expressivity of popular shortcut networks such as ResNet and DenseNet, \textit{e.g.}, residual connections empower a network to represent a sawtooth function efficiently.


Energy Efficient Training of SNN using Local Zeroth Order Method

arXiv.org Artificial Intelligence

Spiking neural networks are becoming increasingly popular for their low energy requirement in real-world tasks with accuracy comparable to the traditional ANNs. SNN training algorithms face the loss of gradient information and non-differentiability due to the Heaviside function in minimizing the model loss over model parameters. To circumvent the problem surrogate method uses a differentiable approximation of the Heaviside in the backward pass, while the forward pass uses the Heaviside as the spiking function. We propose to use the zeroth order technique at the neuron level to resolve this dichotomy and use it within the automatic differentiation tool. As a result, we establish a theoretical connection between the proposed local zeroth-order technique and the existing surrogate methods and vice-versa. The proposed method naturally lends itself to energy-efficient training of SNNs on GPUs. Experimental results with neuromorphic datasets show that such implementation requires less than 1 percent neurons to be active in the backward pass, resulting in a 100x speed-up in the backward computation time. Our method offers better generalization compared to the state-of-the-art energy-efficient technique while maintaining similar efficiency.