Not enough data to create a plot.
Try a different view from the menu above.
Xiong, Caiming
FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows"
Ming, Yifei, Purushwalkam, Senthil, Pandit, Shrey, Ke, Zixuan, Nguyen, Xuan-Phi, Xiong, Caiming, Joty, Shafiq
Ensuring faithfulness to context in large language models (LLMs) and retrieval-augmented generation (RAG) systems is crucial for reliable deployment in real-world applications, as incorrect or unsupported information can erode user trust. Despite advancements on standard benchmarks, faithfulness hallucination-where models generate responses misaligned with the provided context-remains a significant challenge. In this work, we introduce FaithEval, a novel and comprehensive benchmark tailored to evaluate the faithfulness of LLMs in contextual scenarios across three diverse tasks: unanswerable, inconsistent, and counterfactual contexts. These tasks simulate real-world challenges where retrieval mechanisms may surface incomplete, contradictory, or fabricated information. FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework, employing both LLM-based auto-evaluation and human validation. Our extensive study across a wide range of open-source and proprietary models reveals that even state-of-the-art models often struggle to remain faithful to the given context, and that larger models do not necessarily exhibit improved faithfulness.Project is available at: \url{https://github.com/SalesforceAIResearch/FaithEval}.
MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs
Wang, Lei, Dong, Shan, Xu, Yuhui, Dong, Hanze, Wang, Yalu, Saha, Amrita, Lim, Ee-Peng, Xiong, Caiming, Sahoo, Doyen
Recent large language models (LLMs) have demonstrated versatile capabilities in long-context scenarios. Although some recent benchmarks have been developed to evaluate the long-context capabilities of LLMs, there is a lack of benchmarks evaluating the mathematical reasoning abilities of LLMs over long contexts, which is crucial for LLMs' application in real-world scenarios. In this paper, we introduce MathHay, an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs. Unlike previous benchmarks like Needle in a Haystack, which focus primarily on information retrieval within long texts, MathHay demands models with both information-seeking and complex mathematical reasoning abilities. We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing LLMs. Even the best-performing model, Gemini-1.5-Pro-002, still struggles with mathematical reasoning over long contexts, achieving only 51.26% accuracy at 128K tokens. This highlights the significant room for improvement on the MathHay benchmark.
ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
Peng, Xiangyu, Xia, Congying, Yang, Xinyi, Xiong, Caiming, Wu, Chien-Sheng, Xing, Chen
Post-training Large Language Models (LLMs) with explicit reasoning trajectories can enhance their reasoning abilities. However, acquiring such high-quality trajectory data typically demands meticulous supervision from humans or superior models, which can be either expensive or license-constrained. In this paper, we explore how far an LLM can improve its reasoning by self-synthesizing reasoning paths as training data without any additional supervision. Existing self-synthesizing methods, such as STaR, suffer from poor generalization to out-of-domain (OOD) reasoning tasks. We hypothesize it is due to that their self-synthesized reasoning paths are too task-specific, lacking general task-agnostic reasoning guidance. To address this, we propose Reasoning Generalist via Self-Improvement (ReGenesis), a method to self-synthesize reasoning paths as post-training data by progressing from abstract to concrete. More specifically, ReGenesis self-synthesizes reasoning paths by converting general reasoning guidelines into task-specific ones, generating reasoning structures, and subsequently transforming these structures into reasoning paths, without the need for human-designed task-specific examples used in existing methods. We show that ReGenesis achieves superior performance on all in-domain and OOD settings tested compared to existing methods. For six OOD tasks specifically, while previous methods exhibited an average performance decrease of approximately 4.6% after post training, ReGenesis delivers around 6.1% performance improvement. We also conduct in-depth analysis of our framework and show ReGenesis is effective across various LLMs and design choices.
Direct Judgement Preference Optimization
Wang, Peifeng, Xu, Austin, Zhou, Yilun, Xiong, Caiming, Joty, Shafiq
Auto-evaluation is crucial for assessing response quality and offering feedback for model development. Recent studies have explored training large language models (LLMs) as generative judges to evaluate and critique other models' outputs. In this work, we investigate the idea of learning from both positive and negative data with preference optimization to enhance the evaluation capabilities of LLM judges across an array of different use cases. We achieve this by employing three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective. Our comprehensive study over a wide range of benchmarks demonstrates the effectiveness of our method. In particular, our generative judge achieves the best performance on 10 out of 13 benchmarks, outperforming strong baselines like GPT-4o and specialized judge models. Further analysis show that our judge model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
Cao, Ruisheng, Lei, Fangyu, Wu, Haoyuan, Chen, Jixuan, Fu, Yeqiao, Gao, Hongcheng, Xiong, Xinzhuang, Zhang, Hanchong, Mao, Yuchen, Hu, Wenjing, Xie, Tianbao, Xu, Hongshen, Zhang, Danyang, Wang, Sida, Sun, Ruoxi, Yin, Pengcheng, Xiong, Caiming, Ni, Ansong, Liu, Qian, Zhong, Victor, Chen, Lu, Yu, Kai, Yu, Tao
Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.
APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets
Liu, Zuxin, Hoang, Thai, Zhang, Jianguo, Zhu, Ming, Lan, Tian, Kokane, Shirley, Tan, Juntao, Yao, Weiran, Liu, Zhiwei, Feng, Yihao, Murthy, Rithesh, Yang, Liangwei, Savarese, Silvio, Niebles, Juan Carlos, Wang, Huan, Heinecke, Shelby, Xiong, Caiming
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains.
INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness
Le, Hung, Zhou, Yingbo, Xiong, Caiming, Savarese, Silvio, Sahoo, Doyen
Large language models (LLMs) for code are typically trained to align with natural language instructions to closely follow their intentions and requirements. However, in many practical scenarios, it becomes increasingly challenging for these models to navigate the intricate boundary between helpfulness and safety, especially against highly complex yet potentially malicious instructions. In this work, we introduce INDICT: a new framework that empowers LLMs with Internal Dialogues of Critiques for both safety and helpfulness guidance. The internal dialogue is a dual cooperative system between a safety-driven critic and a helpfulness-driven critic. Each critic provides analysis against the given task and corresponding generated response, equipped with external knowledge queried through relevant code snippets and tools like web search and code interpreter. We engage the dual critic system in both code generation stage as well as code execution stage, providing preemptive and post-hoc guidance respectively to LLMs. We evaluated INDICT on 8 diverse tasks across 8 programming languages from 5 benchmarks, using LLMs from 7B to 70B parameters. We observed that our approach can provide an advanced level of critiques of both safety and helpfulness analysis, significantly improving the quality of output codes ($+10\%$ absolute improvements in all models).
MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases
Murthy, Rithesh, Yang, Liangwei, Tan, Juntao, Awalgaonkar, Tulika Manoj, Zhou, Yilun, Heinecke, Shelby, Desai, Sachin, Wu, Jason, Xu, Ran, Tan, Sarah, Zhang, Jianguo, Liu, Zhiwei, Kokane, Shirley, Liu, Zuxin, Zhu, Ming, Wang, Huan, Xiong, Caiming, Savarese, Silvio
The deployment of Large Language Models (LLMs) and Large Multimodal Models (LMMs) on mobile devices has gained significant attention due to the benefits of enhanced privacy, stability, and personalization. However, the hardware constraints of mobile devices necessitate the use of models with fewer parameters and model compression techniques like quantization. Currently, there is limited understanding of quantization's impact on various task performances, including LLM tasks, LMM tasks, and, critically, trust and safety. There is a lack of adequate tools for systematically testing these models on mobile devices. To address these gaps, we introduce MobileAIBench, a comprehensive benchmarking framework for evaluating mobile-optimized LLMs and LMMs. MobileAIBench assesses models across different sizes, quantization levels, and tasks, measuring latency and resource consumption on real devices. Our two-part open-source framework includes a library for running evaluations on desktops and an iOS app for on-device latency and hardware utilization measurements. Our thorough analysis aims to accelerate mobile AI research and deployment by providing insights into the performance and feasibility of deploying LLMs and LMMs on mobile platforms.
RLHF Workflow: From Reward Modeling to Online RLHF
Dong, Hanze, Xiong, Wei, Pang, Bo, Wang, Haoxiang, Zhao, Han, Zhou, Yingbo, Jiang, Nan, Sahoo, Doyen, Xiong, Caiming, Zhang, Tong
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, LLaMA-3-8B-SFR-Iterative-DPO-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.
UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting
Liu, Juncheng, Liu, Chenghao, Woo, Gerald, Wang, Yiwei, Hooi, Bryan, Xiong, Caiming, Sahoo, Doyen
Transformer-based models have emerged as powerful tools for multivariate time series forecasting (MTSF). However, existing Transformer models often fall short of capturing both intricate dependencies across variate and temporal dimensions in MTS data. Some recent models are proposed to separately capture variate and temporal dependencies through either two sequential or parallel attention mechanisms. However, these methods cannot directly and explicitly learn the intricate inter-series and intra-series dependencies. In this work, we first demonstrate that these dependencies are very important as they usually exist in real-world data. To directly model these dependencies, we propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens. Additionally, we add a dispatcher module which reduces the complexity and makes the model feasible for a potentially large number of variates. Although our proposed model employs a simple architecture, it offers compelling performance as shown in our extensive experiments on several datasets for time series forecasting.