Plotting

 Xiong, Caiming


Demystifying Domain-adaptive Post-training for Financial LLMs

arXiv.org Artificial Intelligence

Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach begins by identifying the core capabilities required for the target domain and designing a comprehensive evaluation suite aligned with these needs. We then analyze the effectiveness of key post-training stages, including continual pretraining, instruction tuning, and preference alignment. Building on these insights, we propose an effective training recipe centered on a novel preference data distillation method, which leverages process signals from a generative reward model. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs. Project page: https://github.com/SalesforceAIResearch/FinDap


Text2Data: Low-Resource Data Generation with Textual Control

arXiv.org Artificial Intelligence

Natural language serves as a common and straightforward signal for humans to interact seamlessly with machines. Recognizing the importance of this interface, the machine learning community is investing considerable effort in generating data that is semantically coherent with textual instructions. While strides have been made in text-to-data generation spanning image editing, audio synthesis, video creation, and beyond, low-resource areas characterized by expensive annotations or complex data structures, such as molecules, motion dynamics, and time series, often lack textual labels. This deficiency impedes supervised learning, thereby constraining the application of advanced generative models for text-to-data tasks. In response to these challenges in the low-resource scenario, we propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model. Subsequently, it undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting. Comprehensive experiments demonstrate that Text2Data is able to achieve enhanced performance regarding controllability across various modalities, including molecules, motions and time series, when compared to existing baselines.


ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models

arXiv.org Artificial Intelligence

With the rise of multimodal applications, instruction data has become critical for training multimodal language models capable of understanding complex image-based queries. Existing practices rely on powerful but costly large language models (LLMs) or multimodal language models (MLMs) to produce instruction data. These are often prone to hallucinations, licensing issues and the generation process is often hard to scale and interpret. In this work, we present a programmatic approach that employs scene graphs as symbolic representations of images and human-written programs to systematically synthesize vision-centric instruction data. Our approach ensures the interpretability and controllability of the data generation process and scales efficiently while maintaining factual accuracy. By implementing a suite of 24 single-image, 14 multi-image instruction generators, and a scene graph generation pipeline, we build a scalable, cost-effective system: ProVision which produces diverse question-answer pairs concerning objects, attributes, relations, depth, etc., for any given image. Applied to Visual Genome and DataComp datasets, we generate over 10 million instruction data points, ProVision-10M, and leverage them in both pretraining and instruction tuning stages of MLMs. When adopted in the instruction tuning stage, our single-image instruction data yields up to a 7% improvement on the 2D split and 8% on the 3D split of CVBench, along with a 3% increase in performance on QBench2, RealWorldQA, and MMMU. Our multi-image instruction data leads to an 8% improvement on Mantis-Eval. Incorporation of our data in both pre-training and fine-tuning stages of xGen-MM-4B leads to an averaged improvement of 1.6% across 11 benchmarks.


StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) necessitates robust, unbiased, and scalable methods for evaluating their capabilities. However, human annotations are expensive to scale, model-based evaluations are prone to biases in answer style, while target-answer-based benchmarks are vulnerable to data contamination and cheating. To address these limitations, we propose StructTest, a novel benchmark that evaluates LLMs on their ability to produce compositionally specified structured outputs as an unbiased, cheap-to-run and difficult-to-cheat measure. The evaluation is done deterministically by a rule-based evaluator, which can be easily extended to new tasks. By testing structured outputs across diverse task domains -- including Summarization, Code, HTML and Math -- we demonstrate that StructTest serves as a good proxy for general reasoning abilities, as producing structured outputs often requires internal logical reasoning. We believe that StructTest offers a critical, complementary approach to objective and robust model evaluation.


Bridging the Data Provenance Gap Across Text, Speech and Video

arXiv.org Artificial Intelligence

Progress in AI is driven largely by the scale and quality of training data. Despite this, there is a deficit of empirical analysis examining the attributes of well-established datasets beyond text. In this work we conduct the largest and first-of-its-kind longitudinal audit across modalities--popular text, speech, and video datasets--from their detailed sourcing trends and use restrictions to their geographical and linguistic representation. Our manual analysis covers nearly 4000 public datasets between 1990-2024, spanning 608 languages, 798 sources, 659 organizations, and 67 countries. We find that multimodal machine learning applications have overwhelmingly turned to web-crawled, synthetic, and social media platforms, such as YouTube, for their training sets, eclipsing all other sources since 2019. Secondly, tracing the chain of dataset derivations we find that while less than 33% of datasets are restrictively licensed, over 80% of the source content in widely-used text, speech, and video datasets, carry non-commercial restrictions. Finally, counter to the rising number of languages and geographies represented in public AI training datasets, our audit demonstrates measures of relative geographical and multilingual representation have failed to significantly improve their coverage since 2013. We believe the breadth of our audit enables us to empirically examine trends in data sourcing, restrictions, and Western-centricity at an ecosystem-level, and that visibility into these questions are essential to progress in responsible AI. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire multimodal audit, allowing practitioners to trace data provenance across text, speech, and video.


Unanswerability Evaluation for Retreival Augmented Generation

arXiv.org Artificial Intelligence

Existing evaluation frameworks for retrieval-augmented generation (RAG) systems focus on answerable queries, but they overlook the importance of appropriately rejecting unanswerable requests. In this paper, we introduce UAEval4RAG, a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively. We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries for any given knowledge base with unanswered ratio and acceptable ratio metrics. We conduct experiments with various RAG components, including retrieval models, rewriting methods, rerankers, language models, and prompting strategies, and reveal hidden trade-offs in performance of RAG systems. Our findings highlight the critical role of component selection and prompt design in optimizing RAG systems to balance the accuracy of answerable queries with high rejection rates of unanswerable ones. UAEval4RAG provides valuable insights and tools for developing more robust and reliable RAG systems.


AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials

arXiv.org Artificial Intelligence

Graphical User Interface (GUI) agents hold great potential for automating complex tasks across diverse digital environments, from web applications to desktop software. However, the development of such agents is hindered by the lack of high-quality, multi-step trajectory data required for effective training. Existing approaches rely on expensive and labor-intensive human annotation, making them unsustainable at scale. To address this challenge, we propose AgentTrek, a scalable data synthesis pipeline that generates high-quality GUI agent trajectories by leveraging web tutorials. Our method automatically gathers tutorial-like texts from the internet, transforms them into task goals with step-by-step instructions, and employs a visual-language model agent to simulate their execution in a real digital environment. A VLM-based evaluator ensures the correctness of the generated trajectories. We demonstrate that training GUI agents with these synthesized trajectories significantly improves their grounding and planning performance over the current models. Moreover, our approach is more cost-efficient compared to traditional human annotation methods. This work underscores the potential of guided replay with web tutorials as a viable strategy for large-scale GUI agent training, paving the way for more capable and autonomous digital agents.


GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers

arXiv.org Artificial Intelligence

The effectiveness of large language models (LLMs) is closely tied to the design of prompts, making prompt optimization essential for enhancing their performance across a wide range of tasks. Many existing approaches to automating prompt engineering rely exclusively on textual feedback, refining prompts based solely on inference errors identified by large, computationally expensive LLMs. Unfortunately, smaller models struggle to generate high-quality feedback, resulting in complete dependence on large LLM judgment. Moreover, these methods fail to leverage more direct and finer-grained information, such as gradients, due to operating purely in text space. To this end, we introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning. By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models without the need for costly closed-source LLMs. This allows high-performance prompt optimization without dependence on massive LLMs, closing the gap between smaller models and the sophisticated reasoning often needed for prompt refinement. Extensive evaluations across diverse reasoning tasks including BBH, GSM8k, and FOLIO demonstrate that GReaTer consistently outperforms previous state-of-the-art prompt optimization methods, even those reliant on powerful LLMs. Additionally, GReaTer-optimized prompts frequently exhibit better transferability and, in some cases, boost task performance to levels comparable to or surpassing those achieved by larger language models, highlighting the effectiveness of prompt optimization guided by gradients over reasoning. Code of GReaTer is available at https://github.com/psunlpgroup/GreaTer.


SiReRAG: Indexing Similar and Related Information for Multihop Reasoning

arXiv.org Artificial Intelligence

Indexing is an important step towards strong performance in retrieval-augmented generation (RAG) systems. However, existing methods organize data based on either semantic similarity (similarity) or related information (relatedness), but do not cover both perspectives comprehensively. Our analysis reveals that modeling only one perspective results in insufficient knowledge synthesis, leading to suboptimal performance on complex tasks requiring multihop reasoning. In this paper, we propose SiReRAG, a novel RAG indexing approach that explicitly considers both similar and related information. On the similarity side, we follow existing work and explore some variances to construct a similarity tree based on recursive summarization. On the relatedness side, SiReRAG extracts propositions and entities from texts, groups propositions via shared entities, and generates recursive summaries to construct a relatedness tree. We index and flatten both similarity and relatedness trees into a unified retrieval pool. Our experiments demonstrate that SiReRAG consistently outperforms state-of-the-art indexing methods on three multihop datasets (MuSiQue, 2WikiMultiHopQA, and HotpotQA), with an average 1.9% improvement in F1 scores. As a reasonably efficient solution, SiReRAG enhances existing reranking methods significantly, with up to 7.8% improvement in average F1 scores.


Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction

arXiv.org Artificial Intelligence

Graphical User Interfaces (GUIs) are critical to human-computer interaction, yet automating GUI tasks remains challenging due to the complexity and variability of visual environments. Existing approaches often rely on textual representations of GUIs, which introduce limitations in generalization, efficiency, and scalability. In this paper, we introduce Aguvis, a unified pure vision-based framework for autonomous GUI agents that operates across various platforms. Our approach leverages image-based observations, and grounding instructions in natural language to visual elements, and employs a consistent action space to ensure cross-platform generalization. To address the limitations of previous work, we integrate explicit planning and reasoning within the model, enhancing its ability to autonomously navigate and interact with complex digital environments. We construct a large-scale dataset of GUI agent trajectories, incorporating multimodal reasoning and grounding, and employ a two-stage training pipeline that first focuses on general GUI grounding, followed by planning and reasoning. Through comprehensive experiments, we demonstrate that Aguvis surpasses previous state-of-the-art methods in both offline and real-world online scenarios, achieving, to our knowledge, the first fully autonomous pure vision GUI agent capable of performing tasks independently without collaboration with external closed-source models. We open-sourced all datasets, models, and training recipes to facilitate future research at https://aguvis-project.github.io/.