Goto

Collaborating Authors

 Xing, Eric P


Toward Inference-optimal Mixture-of-Expert Large Language Models

arXiv.org Artificial Intelligence

Mixture-of-Expert (MoE) based large language models (LLMs), such as the recent Mixtral and DeepSeek-MoE, have shown great promise in scaling model size without suffering from the quadratic growth of training cost of dense transformers. Like dense models, training MoEs requires answering the same question: given a training budget, what is the optimal allocation on the model size and number of tokens? We study the scaling law of MoE-based LLMs regarding the relations between the model performance, model size, dataset size, and the expert degree. Echoing previous research studying MoE in different contexts, we observe the diminishing return of increasing the number of experts, but this seems to suggest we should scale the number of experts until saturation, as the training cost would remain constant, which is problematic during inference time. We propose to amend the scaling law of MoE by introducing inference efficiency as another metric besides the validation loss. We find that MoEs with a few (4/8) experts are the most serving efficient solution under the same performance, but costs 2.5-3.5x more in training. On the other hand, training a (16/32) expert MoE much smaller (70-85%) than the loss-optimal solution, but with a larger training dataset is a promising setup under a training budget.


Multi-modal Self-supervised Pre-training for Regulatory Genome Across Cell Types

arXiv.org Artificial Intelligence

In the genome biology research, regulatory genome modeling is an important topic for many regulatory downstream tasks, such as promoter classification, transaction factor binding sites prediction. The core problem is to model how regulatory elements interact with each other and its variability across different cell types. However, current deep learning methods often focus on modeling genome sequences of a fixed set of cell types and do not account for the interaction between multiple regulatory elements, making them only perform well on the cell types in the training set and lack the generalizability required in biological applications. In this work, we propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT. Specifically, we simultaneously take the 1d sequence of genome data and a 2d matrix of (transcription factors x regions) as the input, where three pre-training tasks are proposed to improve the robustness and generalizability of our model. We pre-train our model on the ATAC-seq dataset with 17 million genome sequences. We evaluate our GeneBERT on regulatory downstream tasks across different cell types, including promoter classification, transaction factor binding sites prediction, disease risk estimation, and splicing sites prediction. Extensive experiments demonstrate the effectiveness of multi-modal and self-supervised pre-training for large-scale regulatory genomics data.


State Space LSTM Models with Particle MCMC Inference

arXiv.org Machine Learning

Long Short-Term Memory (LSTM) is one of the most powerful sequence models. Despite the strong performance, however, it lacks the nice interpretability as in state space models. In this paper, we present a way to combine the best of both worlds by introducing State Space LSTM (SSL) models that generalizes the earlier work \cite{zaheer2017latent} of combining topic models with LSTM. However, unlike \cite{zaheer2017latent}, we do not make any factorization assumptions in our inference algorithm. We present an efficient sampler based on sequential Monte Carlo (SMC) method that draws from the joint posterior directly. Experimental results confirms the superiority and stability of this SMC inference algorithm on a variety of domains.


Mixed membership stochastic blockmodels

arXiv.org Machine Learning

Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochastic blockmodel. This model extends blockmodels for relational data to ones which capture mixed membership latent relational structure, thus providing an object-specific low-dimensional representation. We develop a general variational inference algorithm for fast approximate posterior inference. We explore applications to social and protein interaction networks.