Goto

Collaborating Authors

 Xing, Bowei


FreEformer: Frequency Enhanced Transformer for Multivariate Time Series Forecasting

arXiv.org Artificial Intelligence

This paper presents \textbf{FreEformer}, a simple yet effective model that leverages a \textbf{Fre}quency \textbf{E}nhanced Trans\textbf{former} for multivariate time series forecasting. Our work is based on the assumption that the frequency spectrum provides a global perspective on the composition of series across various frequencies and is highly suitable for robust representation learning. Specifically, we first convert time series into the complex frequency domain using the Discrete Fourier Transform (DFT). The Transformer architecture is then applied to the frequency spectra to capture cross-variate dependencies, with the real and imaginary parts processed independently. However, we observe that the vanilla attention matrix exhibits a low-rank characteristic, thus limiting representation diversity. This could be attributed to the inherent sparsity of the frequency domain and the strong-value-focused nature of Softmax in vanilla attention. To address this, we enhance the vanilla attention mechanism by introducing an additional learnable matrix to the original attention matrix, followed by row-wise L1 normalization. Theoretical analysis~demonstrates that this enhanced attention mechanism improves both feature diversity and gradient flow. Extensive experiments demonstrate that FreEformer consistently outperforms state-of-the-art models on eighteen real-world benchmarks covering electricity, traffic, weather, healthcare and finance. Notably, the enhanced attention mechanism also consistently improves the performance of state-of-the-art Transformer-based forecasters.


Kimi k1.5: Scaling Reinforcement Learning with LLMs

arXiv.org Artificial Intelligence

Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).


Sub-Adjacent Transformer: Improving Time Series Anomaly Detection with Reconstruction Error from Sub-Adjacent Neighborhoods

arXiv.org Artificial Intelligence

In this paper, we present the Sub-Adjacent Transformer with a novel attention mechanism for unsupervised time series anomaly detection. Unlike previous approaches that rely on all the points within some neighborhood for time point reconstruction, our method restricts the attention to regions not immediately adjacent to the target points, termed sub-adjacent neighborhoods. Our key observation is that owing to the rarity of anomalies, they typically exhibit more pronounced differences from their sub-adjacent neighborhoods than from their immediate vicinities. By focusing the attention on the sub-adjacent areas, we make the reconstruction of anomalies more challenging, thereby enhancing their detectability. Technically, our approach concentrates attention on the non-diagonal areas of the attention matrix by enlarging the corresponding elements in the training stage. To facilitate the implementation of the desired attention matrix pattern, we adopt linear attention because of its flexibility and adaptability. Moreover, a learnable mapping function is proposed to improve the performance of linear attention. Empirically, the Sub-Adjacent Transformer achieves state-of-the-art performance across six real-world anomaly detection benchmarks, covering diverse fields such as server monitoring, space exploration, and water treatment.