Xin, Hao
Are Large Language Models a Good Replacement of Taxonomies?
Sun, Yushi, Xin, Hao, Sun, Kai, Xu, Yifan Ethan, Yang, Xiao, Dong, Xin Luna, Tang, Nan, Chen, Lei
Large language models (LLMs) demonstrate an impressive ability to internalize knowledge and answer natural language questions. Although previous studies validate that LLMs perform well on general knowledge while presenting poor performance on long-tail nuanced knowledge, the community is still doubtful about whether the traditional knowledge graphs should be replaced by LLMs. In this paper, we ask if the schema of knowledge graph (i.e., taxonomy) is made obsolete by LLMs. Intuitively, LLMs should perform well on common taxonomies and at taxonomy levels that are common to people. Unfortunately, there lacks a comprehensive benchmark that evaluates the LLMs over a wide range of taxonomies from common to specialized domains and at levels from root to leaf so that we can draw a confident conclusion. To narrow the research gap, we constructed a novel taxonomy hierarchical structure discovery benchmark named TaxoGlimpse to evaluate the performance of LLMs over taxonomies. TaxoGlimpse covers ten representative taxonomies from common to specialized domains with in-depth experiments of different levels of entities in this taxonomy from root to leaf. Our comprehensive experiments of eighteen state-of-the-art LLMs under three prompting settings validate that LLMs can still not well capture the knowledge of specialized taxonomies and leaf-level entities.
CRAG -- Comprehensive RAG Benchmark
Yang, Xiao, Sun, Kai, Xin, Hao, Sun, Yushi, Bhalla, Nikita, Chen, Xiangsen, Choudhary, Sajal, Gui, Rongze Daniel, Jiang, Ziran Will, Jiang, Ziyu, Kong, Lingkun, Moran, Brian, Wang, Jiaqi, Xu, Yifan Ethan, Yan, An, Yang, Chenyu, Yuan, Eting, Zha, Hanwen, Tang, Nan, Chen, Lei, Scheffer, Nicolas, Liu, Yue, Shah, Nirav, Wanga, Rakesh, Kumar, Anuj, Yih, Wen-tau, Dong, Xin Luna
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve <=34% accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracting thousands of participants and submissions within the first 50 days of the competition. We commit to maintaining CRAG to serve research communities in advancing RAG solutions and general QA solutions.
KGLink: A column type annotation method that combines knowledge graph and pre-trained language model
Wang, Yubo, Xin, Hao, Chen, Lei
The semantic annotation of tabular data plays a crucial role in various downstream tasks. Previous research has proposed knowledge graph (KG)-based and deep learning-based methods, each with its inherent limitations. KG-based methods encounter difficulties annotating columns when there is no match for column cells in the KG. Moreover, KG-based methods can provide multiple predictions for one column, making it challenging to determine the semantic type with the most suitable granularity for the dataset. This type granularity issue limits their scalability. On the other hand, deep learning-based methods face challenges related to the valuable context missing issue. This occurs when the information within the table is insufficient for determining the correct column type. This paper presents KGLink, a method that combines WikiData KG information with a pre-trained deep learning language model for table column annotation, effectively addressing both type granularity and valuable context missing issues. Through comprehensive experiments on widely used tabular datasets encompassing numeric and string columns with varying type granularity, we showcase the effectiveness and efficiency of KGLink. By leveraging the strengths of KGLink, we successfully surmount challenges related to type granularity and valuable context issues, establishing it as a robust solution for the semantic annotation of tabular data.
Multi-level Multiple Instance Learning with Transformer for Whole Slide Image Classification
Zhang, Ruijie, Zhang, Qiaozhe, Liu, Yingzhuang, Xin, Hao, Liu, Yan, Wang, Xinggang
Whole slide image (WSI) refers to a type of high-resolution scanned tissue image, which is extensively employed in computer-assisted diagnosis (CAD). The extremely high resolution and limited availability of region-level annotations make employing deep learning methods for WSI-based digital diagnosis challenging. Recently integrating multiple instance learning (MIL) and Transformer for WSI analysis shows very promising results. However, designing effective Transformers for this weakly-supervised high-resolution image analysis is an underexplored yet important problem. In this paper, we propose a Multi-level MIL (MMIL) scheme by introducing a hierarchical structure to MIL, which enables efficient handling of MIL tasks involving a large number of instances. Based on MMIL, we instantiated MMIL-Transformer, an efficient Transformer model with windowed exact self-attention for large-scale MIL tasks. To validate its effectiveness, we conducted a set of experiments on WSI classification tasks, where MMIL-Transformer demonstrate superior performance compared to existing state-of-the-art methods, i.e., 96.80% test AUC and 97.67% test accuracy on the CAMELYON16 dataset, 99.04% test AUC and 94.37% test accuracy on the TCGA-NSCLC dataset, respectively. All code and pre-trained models are available at: https://github.com/hustvl/MMIL-Transformer