Goto

Collaborating Authors

 Xie, Yuxuan


PanopticSplatting: End-to-End Panoptic Gaussian Splatting

arXiv.org Artificial Intelligence

Open-vocabulary panoptic reconstruction is a challenging task for simultaneous scene reconstruction and understanding. Recently, methods have been proposed for 3D scene understanding based on Gaussian splatting. However, these methods are multi-staged, suffering from the accumulated errors and the dependence of hand-designed components. To streamline the pipeline and achieve global optimization, we propose PanopticSplatting, an end-to-end system for open-vocabulary panoptic reconstruction. Our method introduces query-guided Gaussian segmentation with local cross attention, lifting 2D instance masks without cross-frame association in an end-to-end way. The local cross attention within view frustum effectively reduces the training memory, making our model more accessible to large scenes with more Gaussians and objects. In addition, to address the challenge of noisy labels in 2D pseudo masks, we propose label blending to promote consistent 3D segmentation with less noisy floaters, as well as label warping on 2D predictions which enhances multi-view coherence and segmentation accuracy. Our method demonstrates strong performances in 3D scene panoptic reconstruction on the ScanNet-V2 and ScanNet++ datasets, compared with both NeRF-based and Gaussian-based panoptic reconstruction methods. Moreover, PanopticSplatting can be easily generalized to numerous variants of Gaussian splatting, and we demonstrate its robustness on different Gaussian base models.


Each Graph is a New Language: Graph Learning with LLMs

arXiv.org Artificial Intelligence

Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.


Leverage Cross-Attention for End-to-End Open-Vocabulary Panoptic Reconstruction

arXiv.org Artificial Intelligence

Open-vocabulary panoptic reconstruction offers comprehensive scene understanding, enabling advances in embodied robotics and photorealistic simulation. In this paper, we propose PanopticRecon++, an end-to-end method that formulates panoptic reconstruction through a novel cross-attention perspective. This perspective models the relationship between 3D instances (as queries) and the scene's 3D embedding field (as keys) through their attention map. Unlike existing methods that separate the optimization of queries and keys or overlook spatial proximity, PanopticRecon++ introduces learnable 3D Gaussians as instance queries. This formulation injects 3D spatial priors to preserve proximity while maintaining end-to-end optimizability. Moreover, this query formulation facilitates the alignment of 2D open-vocabulary instance IDs across frames by leveraging optimal linear assignment with instance masks rendered from the queries. Additionally, we ensure semantic-instance segmentation consistency by fusing query-based instance segmentation probabilities with semantic probabilities in a novel panoptic head supervised by a panoptic loss. During training, the number of instance query tokens dynamically adapts to match the number of objects. PanopticRecon++ shows competitive performance in terms of 3D and 2D segmentation and reconstruction performance on both simulation and real-world datasets, and demonstrates a user case as a robot simulator. Our project website is at: https://yuxuan1206.github.io/panopticrecon_pp/


TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts

arXiv.org Artificial Intelligence

Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.