Goto

Collaborating Authors

 Xie, Yuqiang


A Group Fairness Lens for Large Language Models

arXiv.org Artificial Intelligence

The rapid advancement of large language models has revolutionized various applications but also raised crucial concerns about their potential to perpetuate biases and unfairness when deployed in social media contexts. Evaluating LLMs' potential biases and fairness has become crucial, as existing methods rely on limited prompts focusing on just a few groups, lacking a comprehensive categorical perspective. In this paper, we propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFair, encapsulating target-attribute combinations across multiple dimensions. In addition, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLM from a group fairness perspective, we pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias in LLMs to achieve fairness.


DiffusEmp: A Diffusion Model-Based Framework with Multi-Grained Control for Empathetic Response Generation

arXiv.org Artificial Intelligence

Empathy is a crucial factor in open-domain conversations, which naturally shows one's caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.


FADO: Feedback-Aware Double COntrolling Network for Emotional Support Conversation

arXiv.org Artificial Intelligence

Emotional Support Conversation (ESConv) aims to reduce help-seekers'emotional distress with the supportive strategy and response. It is essential for the supporter to select an appropriate strategy with the feedback of the help-seeker (e.g., emotion change during dialog turns, etc) in ESConv. However, previous methods mainly focus on the dialog history to select the strategy and ignore the help-seeker's feedback, leading to the wrong and user-irrelevant strategy prediction. In addition, these approaches only model the context-to-strategy flow and pay less attention to the strategy-to-context flow that can focus on the strategy-related context for generating the strategy-constrain response. In this paper, we propose a Feedback-Aware Double COntrolling Network (FADO) to make a strategy schedule and generate the supportive response. The core module in FADO consists of a dual-level feedback strategy selector and a double control reader. Specifically, the dual-level feedback strategy selector leverages the turn-level and conversation-level feedback to encourage or penalize strategies. The double control reader constructs the novel strategy-to-context flow for generating the strategy-constrain response. Furthermore, a strategy dictionary is designed to enrich the semantic information of the strategy and improve the quality of strategy-constrain response. Experimental results on ESConv show that the proposed FADO has achieved the state-of-the-art performance in terms of both strategy selection and response generation. Our code is available at https://github.com/Thedatababbler/FADO.


Know Deeper: Knowledge-Conversation Cyclic Utilization Mechanism for Open-domain Dialogue Generation

arXiv.org Artificial Intelligence

End-to-End intelligent neural dialogue systems suffer from the problems of generating inconsistent and repetitive responses. Existing dialogue models pay attention to unilaterally incorporating personal knowledge into the dialog while ignoring the fact that incorporating the personality-related conversation information into personal knowledge taken as the bilateral information flow boosts the quality of the subsequent conversation. Besides, it is indispensable to control personal knowledge utilization over the conversation level. In this paper, we propose a conversation-adaption multi-view persona aware response generation model that aims at enhancing conversation consistency and alleviating the repetition from two folds. First, we consider conversation consistency from multiple views. From the view of the persona profile, we design a novel interaction module that not only iteratively incorporates personalized knowledge into each turn conversation but also captures the personality-related information from conversation to enhance personalized knowledge semantic representation. From the view of speaking style, we introduce the speaking style vector and feed it into the decoder to keep the speaking style consistency. To avoid conversation repetition, we devise a coverage mechanism to keep track of the activation of personal knowledge utilization. Experiments on both automatic and human evaluation verify the superiority of our model over previous models.