Goto

Collaborating Authors

 Xie, Yuankun


Neural Codec Source Tracing: Toward Comprehensive Attribution in Open-Set Condition

arXiv.org Artificial Intelligence

Current research in audio deepfake detection is gradually transitioning from binary classification to multi-class tasks, referred as audio deepfake source tracing task. However, existing studies on source tracing consider only closed-set scenarios and have not considered the challenges posed by open-set conditions. In this paper, we define the Neural Codec Source Tracing (NCST) task, which is capable of performing open-set neural codec classification and interpretable ALM detection. Specifically, we constructed the ST-Codecfake dataset for the NCST task, which includes bilingual audio samples generated by 11 state-of-the-art neural codec methods and ALM-based out-ofdistribution (OOD) test samples. Furthermore, we establish a comprehensive source tracing benchmark to assess NCST models in open-set conditions. The experimental results reveal that although the NCST models perform well in in-distribution (ID) classification and OOD detection, they lack robustness in classifying unseen real audio. The ST-codecfake dataset and code are available.


A multi-speaker multi-lingual voice cloning system based on vits2 for limmits 2024 challenge

arXiv.org Artificial Intelligence

This paper presents the development of a speech synthesis system for the LIMMITS'24 Challenge, focusing primarily on Track 2. The objective of the challenge is to establish a multi-speaker, multi-lingual Indic Text-to-Speech system with voice cloning capabilities, covering seven Indian languages with both male and female speakers. The system was trained using challenge data and fine-tuned for few-shot voice cloning on target speakers. Evaluation included both mono-lingual and cross-lingual synthesis across all seven languages, with subjective tests assessing naturalness and speaker similarity. Our system uses the VITS2 architecture, augmented with a multi-lingual ID and a BERT model to enhance contextual language comprehension. In Track 1, where no additional data usage was permitted, our model achieved a Speaker Similarity score of 4.02. In Track 2, which allowed the use of extra data, it attained a Speaker Similarity score of 4.17.


Generalized Source Tracing: Detecting Novel Audio Deepfake Algorithm with Real Emphasis and Fake Dispersion Strategy

arXiv.org Artificial Intelligence

With the proliferation of deepfake audio, there is an urgent need to investigate their attribution. Current source tracing methods can effectively distinguish in-distribution (ID) categories. However, the rapid evolution of deepfake algorithms poses a critical challenge in the accurate identification of out-of-distribution (OOD) novel deepfake algorithms. In this paper, we propose Real Emphasis and Fake Dispersion (REFD) strategy for audio deepfake algorithm recognition, demonstrating its effectiveness in discriminating ID samples while identifying OOD samples. For effective OOD detection, we first explore current post-hoc OOD methods and propose NSD, a novel OOD approach in identifying novel deepfake algorithms through the similarity consideration of both feature and logits scores. REFD achieves 86.83% F1-score as a single system in Audio Deepfake Detection Challenge 2023 Track3, showcasing its state-of-the-art performance.


The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio

arXiv.org Artificial Intelligence

With the proliferation of Audio Language Model (ALM) based deepfake audio, there is an urgent need for generalized detection methods. ALM-based deepfake audio currently exhibits widespread, high deception, and type versatility, posing a significant challenge to current audio deepfake detection (ADD) models trained solely on vocoded data. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including 2 languages, over 1M audio samples, and various test conditions, focus on ALM-based audio detection. As countermeasure, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. In our experiments, we first demonstrate that ADD model training with the Codecfake dataset can effectively detects ALM-based audio. Furthermore, our proposed generalization countermeasure yields the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models. The dataset and associated code are available online.


An Efficient Temporary Deepfake Location Approach Based Embeddings for Partially Spoofed Audio Detection

arXiv.org Artificial Intelligence

Partially spoofed audio detection is a challenging task, lying in the need to accurately locate the authenticity of audio at the frame level. To address this issue, we propose a fine-grained partially spoofed audio detection method, namely Temporal Deepfake Location (TDL), which can effectively capture information of both features and locations. Specifically, our approach involves two novel parts: embedding similarity module and temporal convolution operation. To enhance the identification between the real and fake features, the embedding similarity module is designed to generate an embedding space that can separate the real frames from fake frames. To effectively concentrate on the position information, temporal convolution operation is proposed to calculate the frame-specific similarities among neighboring frames, and dynamically select informative neighbors to convolution. Extensive experiments show that our method outperform baseline models in ASVspoof2019 Partial Spoof dataset and demonstrate superior performance even in the crossdataset scenario.


FSD: An Initial Chinese Dataset for Fake Song Detection

arXiv.org Artificial Intelligence

Singing voice synthesis and singing voice conversion have significantly advanced, revolutionizing musical experiences. However, the rise of "Deepfake Songs" generated by these technologies raises concerns about authenticity. Unlike Audio DeepFake Detection (ADD), the field of song deepfake detection lacks specialized datasets or methods for song authenticity verification. In this paper, we initially construct a Chinese Fake Song Detection (FSD) dataset to investigate the field of song deepfake detection. The fake songs in the FSD dataset are generated by five state-of-the-art singing voice synthesis and singing voice conversion methods. Our initial experiments on FSD revealed the ineffectiveness of existing speech-trained ADD models for the task of song deepFake detection. Thus, we employ the FSD dataset for the training of ADD models. We subsequently evaluate these models under two scenarios: one with the original songs and another with separated vocal tracks. Experiment results show that song-trained ADD models exhibit a 38.58% reduction in average equal error rate compared to speech-trained ADD models on the FSD test set.