Goto

Collaborating Authors

 Xie, Yang


Large language models enabled multiagent ensemble method for efficient EHR data labeling

arXiv.org Artificial Intelligence

This study introduces a novel multiagent ensemble method powered by LLMs to address a key challenge in ML - data labeling, particularly in large-scale EHR datasets. Manual labeling of such datasets requires domain expertise and is labor-intensive, time-consuming, expensive, and error-prone. To overcome this bottleneck, we developed an ensemble LLMs method and demonstrated its effectiveness in two real-world tasks: (1) labeling a large-scale unlabeled ECG dataset in MIMIC-IV; (2) identifying social determinants of health (SDOH) from the clinical notes of EHR. Trading off benefits and cost, we selected a pool of diverse open source LLMs with satisfactory performance. We treat each LLM's prediction as a vote and apply a mechanism of majority voting with minimal winning threshold for ensemble. We implemented an ensemble LLMs application for EHR data labeling tasks. By using the ensemble LLMs and natural language processing, we labeled MIMIC-IV ECG dataset of 623,566 ECG reports with an estimated accuracy of 98.2%. We applied the ensemble LLMs method to identify SDOH from social history sections of 1,405 EHR clinical notes, also achieving competitive performance. Our experiments show that the ensemble LLMs can outperform individual LLM even the best commercial one, and the method reduces hallucination errors. From the research, we found that (1) the ensemble LLMs method significantly reduces the time and effort required for labeling large-scale EHR data, automating the process with high accuracy and quality; (2) the method generalizes well to other text data labeling tasks, as shown by its application to SDOH identification; (3) the ensemble of a group of diverse LLMs can outperform or match the performance of the best individual LLM; and (4) the ensemble method substantially reduces hallucination errors. This approach provides a scalable and efficient solution to data-labeling challenges.


Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference

arXiv.org Artificial Intelligence

In causal inference, it is a fundamental task to estimate the causal effect from observational data. However, latent confounders pose major challenges in causal inference in observational data, for example, confounding bias and M-bias. Recent data-driven causal effect estimators tackle the confounding bias problem via balanced representation learning, but assume no M-bias in the system, thus they fail to handle the M-bias. In this paper, we identify a challenging and unsolved problem caused by a variable that leads to confounding bias and M-bias simultaneously. To address this problem with co-occurring M-bias and confounding bias, we propose a novel Disentangled Latent Representation learning framework for learning latent representations from proxy variables for unbiased Causal effect Estimation (DLRCE) from observational data. Specifically, DLRCE learns three sets of latent representations from the measured proxy variables to adjust for the confounding bias and M-bias. Extensive experiments on both synthetic and three real-world datasets demonstrate that DLRCE significantly outperforms the state-of-the-art estimators in the case of the presence of both confounding bias and M-bias.


Causal Intervention for Measuring Confidence in Drug-Target Interaction Prediction

arXiv.org Artificial Intelligence

Identifying and discovering drug-target interactions(DTIs) are vital steps in drug discovery and development. They play a crucial role in assisting scientists in finding new drugs and accelerating the drug development process. Recently, knowledge graph and knowledge graph embedding (KGE) models have made rapid advancements and demonstrated impressive performance in drug discovery. However, such models lack authenticity and accuracy in drug target identification, leading to an increased misjudgment rate and reduced drug development efficiency. To address these issues, we focus on the problem of drug-target interactions, with knowledge mapping as the core technology. Specifically, a causal intervention-based confidence measure is employed to assess the triplet score to improve the accuracy of the drug-target interaction prediction model. Experimental results demonstrate that the developed confidence measurement method based on causal intervention can significantly enhance the accuracy of DTI link prediction, particularly for high-precision models. The predicted results are more valuable in guiding the design and development of subsequent drug development experiments, thereby significantly improving the efficiency of drug development.