Xie, Xiaohui
Leveraging LLM Agents for Translating Network Configurations
Wei, Yunze, Xie, Xiaohui, Zuo, Yiwei, Hu, Tianshuo, Chen, Xinyi, Chi, Kaiwen, Cui, Yong
Configuration translation is a critical and frequent task in network operations. When a network device is damaged or outdated, administrators need to replace it to maintain service continuity. The replacement devices may originate from different vendors, necessitating configuration translation to ensure seamless network operation. However, translating configurations manually is a labor-intensive and error-prone process. In this paper, we propose an intent-based framework for translating network configuration with Large Language Model (LLM) Agents. The core of our approach is an Intent-based Retrieval Augmented Generation (IRAG) module that systematically splits a configuration file into fragments, extracts intents, and generates accurate translations. We also design a two-stage verification method to validate the syntax and semantics correctness of the translated configurations. We implement and evaluate the proposed method on real-world network configurations. Experimental results show that our method achieves 97.74% syntax correctness, outperforming state-of-the-art methods in translation accuracy.
Contrastive Learning for Implicit Social Factors in Social Media Popularity Prediction
Zhang, Zhizhen, Qiu, Ruihong, Xie, Xiaohui
On social media sharing platforms, some posts are inherently destined for popularity. Therefore, understanding the reasons behind this phenomenon and predicting popularity before post publication holds significant practical value. The previous work predominantly focuses on enhancing post content extraction for better prediction results. However, certain factors introduced by social platforms also impact post popularity, which has not been extensively studied. For instance, users are more likely to engage with posts from individuals they follow, potentially influencing the popularity of these posts. We term these factors, unrelated to the explicit attractiveness of content, as implicit social factors. Through the analysis of users' post browsing behavior (also validated in public datasets), we propose three implicit social factors related to popularity, including content relevance, user influence similarity, and user identity. To model the proposed social factors, we introduce three supervised contrastive learning tasks. For different task objectives and data types, we assign them to different encoders and control their gradient flows to achieve joint optimization. We also design corresponding sampling and augmentation algorithms to improve the effectiveness of contrastive learning. Extensive experiments on the Social Media Popularity Dataset validate the superiority of our proposed method and also confirm the important role of implicit social factors in popularity prediction. We open source the code at https://github.com/Daisy-zzz/PPCL.git.
NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba
Wang, Tongze, Xie, Xiaohui, Wang, Wenduo, Wang, Chuyi, Zhao, Youjian, Cui, Yong
Network traffic classification is a crucial research area aiming to enhance service quality, streamline network management, and bolster cybersecurity. To address the growing complexity of transmission encryption techniques, various machine learning and deep learning methods have been proposed. However, existing approaches face two main challenges. Firstly, they struggle with model inefficiency due to the quadratic complexity of the widely used Transformer architecture. Secondly, they suffer from inadequate traffic representation because of discarding important byte information while retaining unwanted biases. To address these challenges, we propose NetMamba, an efficient linear-time state space model equipped with a comprehensive traffic representation scheme. We adopt a specially selected and improved unidirectional Mamba architecture for the networking field, instead of the Transformer, to address efficiency issues. In addition, we design a traffic representation scheme to extract valid information from massive traffic data while removing biased information. Evaluation experiments on six public datasets encompassing three main classification tasks showcase NetMamba's superior classification performance compared to state-of-the-art baselines. It achieves an accuracy rate of nearly 99% (some over 99%) in all tasks. Additionally, NetMamba demonstrates excellent efficiency, improving inference speed by up to 60 times while maintaining comparably low memory usage. Furthermore, NetMamba exhibits superior few-shot learning abilities, achieving better classification performance with fewer labeled data. To the best of our knowledge, NetMamba is the first model to tailor the Mamba architecture for networking.
Large Language Models for Networking: Workflow, Advances and Challenges
Liu, Chang, Xie, Xiaohui, Zhang, Xinggong, Cui, Yong
The networking field is characterized by its high complexity and rapid iteration, requiring extensive expertise to accomplish network tasks, ranging from network design, configuration, diagnosis and security. The inherent complexity of these tasks, coupled with the ever-changing landscape of networking technologies and protocols, poses significant hurdles for traditional machine learning-based methods. These methods often struggle to generalize and automate complex tasks in networking, as they require extensive labeled data, domain-specific feature engineering, and frequent retraining to adapt to new scenarios. However, the recent emergence of large language models (LLMs) has sparked a new wave of possibilities in addressing these challenges. LLMs have demonstrated remarkable capabilities in natural language understanding, generation, and reasoning. These models, trained on extensive data, can benefit the networking domain. Some efforts have already explored the application of LLMs in the networking domain and revealed promising results. By reviewing recent advances, we present an abstract workflow to describe the fundamental process involved in applying LLM for Networking. We introduce the highlights of existing works by category and explain in detail how they operate at different stages of the workflow. Furthermore, we delve into the challenges encountered, discuss potential solutions, and outline future research prospects. We hope that this survey will provide insight for researchers and practitioners, promoting the development of this interdisciplinary research field.
Integrating Efficient Optimal Transport and Functional Maps For Unsupervised Shape Correspondence Learning
Le, Tung, Nguyen, Khai, Sun, Shanlin, Ho, Nhat, Xie, Xiaohui
In the realm of computer vision and graphics, accurately establishing correspondences between geometric 3D shapes is pivotal for applications like object tracking, registration, texture transfer, and statistical shape analysis. Moving beyond traditional hand-crafted and data-driven feature learning methods, we incorporate spectral methods with deep learning, focusing on functional maps (FMs) and optimal transport (OT). Traditional OT-based approaches, often reliant on entropy regularization OT in learning-based framework, face computational challenges due to their quadratic cost. Our key contribution is to employ the sliced Wasserstein distance (SWD) for OT, which is a valid fast optimal transport metric in an unsupervised shape matching framework. This unsupervised framework integrates functional map regularizers with a novel OT-based loss derived from SWD, enhancing feature alignment between shapes treated as discrete probability measures. We also introduce an adaptive refinement process utilizing entropy regularized OT, further refining feature alignments for accurate point-to-point correspondences. Our method demonstrates superior performance in non-rigid shape matching, including near-isometric and non-isometric scenarios, and excels in downstream tasks like segmentation transfer. The empirical results on diverse datasets highlight our framework's effectiveness and generalization capabilities, setting new standards in non-rigid shape matching with efficient OT metrics and an adaptive refinement module.
Adaptive Image Registration: A Hybrid Approach Integrating Deep Learning and Optimization Functions for Enhanced Precision
De Araujo, Gabriel, Sun, Shanlin, Xie, Xiaohui
Image registration has traditionally been done using two distinct approaches: learning based methods, relying on robust deep neural networks, and optimization-based methods, applying complex mathematical transformations to warp images accordingly. Of course, both paradigms offer advantages and disadvantages, and, in this work, we seek to combine their respective strengths into a single streamlined framework, using the outputs of the learning based method as initial parameters for optimization while prioritizing computational power for the image pairs that offer the greatest loss. Our investigations showed improvements of up to 1.6% in test data, while maintaining the same inference time, and a substantial 1.0% points performance gain in deformation field smoothness.
Relevance Feedback with Brain Signals
Ye, Ziyi, Xie, Xiaohui, Ai, Qingyao, Liu, Yiqun, Wang, Zhihong, Su, Weihang, Zhang, Min
The Relevance Feedback (RF) process relies on accurate and real-time relevance estimation of feedback documents to improve retrieval performance. Since collecting explicit relevance annotations imposes an extra burden on the user, extensive studies have explored using pseudo-relevance signals and implicit feedback signals as substitutes. However, such signals are indirect indicators of relevance and suffer from complex search scenarios where user interactions are absent or biased. Recently, the advances in portable and high-precision brain-computer interface (BCI) devices have shown the possibility to monitor user's brain activities during search process. Brain signals can directly reflect user's psychological responses to search results and thus it can act as additional and unbiased RF signals. To explore the effectiveness of brain signals in the context of RF, we propose a novel RF framework that combines BCI-based relevance feedback with pseudo-relevance signals and implicit signals to improve the performance of document re-ranking. The experimental results on the user study dataset show that incorporating brain signals leads to significant performance improvement in our RF framework. Besides, we observe that brain signals perform particularly well in several hard search scenarios, especially when implicit signals as feedback are missing or noisy. This reveals when and how to exploit brain signals in the context of RF.
GNN4EEG: A Benchmark and Toolkit for Electroencephalography Classification with Graph Neural Network
Zhang, Kaiyuan, Ye, Ziyi, Ai, Qingyao, Xie, Xiaohui, Liu, Yiqun
Electroencephalography(EEG) classification is a crucial task in neuroscience, neural engineering, and several commercial applications. Traditional EEG classification models, however, have often overlooked or inadequately leveraged the brain's topological information. Recognizing this shortfall, there has been a burgeoning interest in recent years in harnessing the potential of Graph Neural Networks (GNN) to exploit the topological information by modeling features selected from each EEG channel in a graph structure. To further facilitate research in this direction, we introduce GNN4EEG, a versatile and user-friendly toolkit for GNN-based modeling of EEG signals. GNN4EEG comprises three components: (i)A large benchmark constructed with four EEG classification tasks based on EEG data collected from 123 participants. (ii)Easy-to-use implementations on various state-of-the-art GNN-based EEG classification models, e.g., DGCNN, RGNN, etc. (iii)Implementations of comprehensive experimental settings and evaluation protocols, e.g., data splitting protocols, and cross-validation protocols. GNN4EEG is publicly released at https://github.com/Miracle-2001/GNN4EEG.
Improving Social Media Popularity Prediction with Multiple Post Dependencies
Zhang, Zhizhen, Xie, Xiaohui, Yang, Mengyu, Tian, Ye, Jiang, Yong, Cui, Yong
Social Media Popularity Prediction has drawn a lot of attention because of its profound impact on many different applications, such as recommendation systems and multimedia advertising. Despite recent efforts to leverage the content of social media posts to improve prediction accuracy, many existing models fail to fully exploit the multiple dependencies between posts, which are important to comprehensively extract content information from posts. To tackle this problem, we propose a novel prediction framework named Dependency-aware Sequence Network (DSN) that exploits both intra- and inter-post dependencies. For intra-post dependency, DSN adopts a multimodal feature extractor with an efficient fine-tuning strategy to obtain task-specific representations from images and textual information of posts. For inter-post dependency, DSN uses a hierarchical information propagation method to learn category representations that could better describe the difference between posts. DSN also exploits recurrent networks with a series of gating layers for more flexible local temporal processing abilities and multi-head attention for long-term dependencies. The experimental results on the Social Media Popularity Dataset demonstrate the superiority of our method compared to existing state-of-the-art models.
Localized Region Contrast for Enhancing Self-Supervised Learning in Medical Image Segmentation
Yan, Xiangyi, Naushad, Junayed, You, Chenyu, Tang, Hao, Sun, Shanlin, Han, Kun, Ma, Haoyu, Duncan, James, Xie, Xiaohui
Recent advancements in self-supervised learning have demonstrated that effective visual representations can be learned from unlabeled images. This has led to increased interest in applying self-supervised learning to the medical domain, where unlabeled images are abundant and labeled images are difficult to obtain. However, most self-supervised learning approaches are modeled as image level discriminative or generative proxy tasks, which may not capture the finer level representations necessary for dense prediction tasks like multi-organ segmentation. In this paper, we propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation. Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss. Through extensive experiments on three multi-organ segmentation datasets, we demonstrate that integrating LRC to an existing self-supervised method in a limited annotation setting significantly improves segmentation performance. Moreover, we show that LRC can also be applied to fully-supervised pre-training methods to further boost performance.