Goto

Collaborating Authors

 Xie, Xiang


ASD-Diffusion: Anomalous Sound Detection with Diffusion Models

arXiv.org Artificial Intelligence

Unsupervised Anomalous Sound Detection (ASD) aims to design a generalizable method that can be used to detect anomalies when only normal sounds are given. In this paper, Anomalous Sound Detection based on Diffusion Models (ASD-Diffusion) is proposed for ASD in real-world factories. In our pipeline, the anomalies in acoustic features are reconstructed from their noisy corrupted features into their approximate normal pattern. Secondly, a post-processing anomalies filter algorithm is proposed to detect anomalies that exhibit significant deviation from the original input after reconstruction. Furthermore, denoising diffusion implicit model is introduced to accelerate the inference speed by a longer sampling interval of the denoising process. The proposed method is innovative in the application of diffusion models as a new scheme. Experimental results on the development set of DCASE 2023 challenge task 2 outperform the baseline by 7.75%, demonstrating the effectiveness of the proposed method.


MLN-net: A multi-source medical image segmentation method for clustered microcalcifications using multiple layer normalization

arXiv.org Artificial Intelligence

Accurate segmentation of clustered microcalcifications in mammography is crucial for the diagnosis and treatment of breast cancer. Despite exhibiting expert-level accuracy, recent deep learning advancements in medical image segmentation provide insufficient contribution to practical applications, due to the domain shift resulting from differences in patient postures, individual gland density, and imaging modalities of mammography etc. In this paper, a novel framework named MLN-net, which can accurately segment multi-source images using only single source images, is proposed for clustered microcalcification segmentation. We first propose a source domain image augmentation method to generate multi-source images, leading to improved generalization. And a structure of multiple layer normalization (LN) layers is used to construct the segmentation network, which can be found efficient for clustered microcalcification segmentation in different domains. Additionally, a branch selection strategy is designed for measuring the similarity of the source domain data and the target domain data. To validate the proposed MLN-net, extensive analyses including ablation experiments are performed, comparison of 12 baseline methods. Extensive experiments validate the effectiveness of MLN-net in segmenting clustered microcalcifications from different domains and the its segmentation accuracy surpasses state-of-the-art methods. Code will be available at https://github.com/yezanting/MLN-NET-VERSON1.