Goto

Collaborating Authors

 Xie, Meijuan


Unlocking Learning Potentials: The Transformative Effect of Generative AI in Education Across Grade Levels

arXiv.org Artificial Intelligence

The advent of generative artificial intelligence (GAI) has brought about a notable surge in the field of education. The use of GAI to support learning is becoming increasingly prevalent among students. However, the manner and extent of its utilisation vary considerably from one individual to another. And researches about student's utilisation and perceptions of GAI remains relatively scarce. To gain insight into the issue, this paper proposed a hybrid-survey method to examine the impact of GAI on students across four different grades in six key areas (LIPSAL): learning interest, independent learning, problem solving, self-confidence, appropriate use, and learning enjoyment. Firstly, through questionnaire, we found that among LIPSAL, GAI has the greatest impact on the concept of appropriate use, the lowest level of learning interest and self-confidence. Secondly, a comparison of four grades revealed that the high and low factors of LIPSAL exhibited grade-related variation, and college students exhibited a higher level than high school students across LIPSAL. Thirdly, through interview, the students demonstrated a comprehensive understanding of the application of GAI. We found that students have a positive attitude towards GAI and are very willing to use it, which is why GAI has grown so rapidly in popularity. They also told us prospects and challenges in using GAI. In the future, as GAI matures technologically, it will have an greater impact on students. These findings may help better understand usage by different students and inform future research in digital education.


The Status Quo and Future of AI-TPACK for Mathematics Teacher Education Students: A Case Study in Chinese Universities

arXiv.org Artificial Intelligence

As artificial intelligence (AI) technology becomes increasingly prevalent in the filed of education, there is a growing need for mathematics teacher education students (MTES) to demonstrate proficiency in the integration of AI with the technological pedagogical content knowledge (AI-TPACK). To study the issue, we firstly devised an systematic AI-TPACK scale and test on 412 MTES from seven universities. Through descriptive statistical analyses, we found that the current status of AI-TPACK for MTES in China is at a basic, preliminary stage. Secondly, we compared MTES between three different grades on the six variables and found that there is no discernible difference, which suggested that graduate studies were observed to have no promotion in the development of AI-TPACK competencies. Thirdly, we proposed a new AI-TPACK structural equation model (AI-TPACK-SEM) to explore the impact of self-efficacy and teaching beliefs on AI-TPACK. Our findings indicate a positive correlation between self-efficacy and AI-TPACK. We also come to a conclusion that may be contrary to common perception, excessive teaching beliefs may impede the advancement of AI-TPACK. Overall, this paper revealed the current status of AI-TPACK for MTES in China for the first time, designed a dedicated SEM to study the effect of specific factors on AI-TPACK, and proposed some suggestions on future developments.