Goto

Collaborating Authors

 Xie, Junyuan


Graph Neural Networks with Coarse- and Fine-Grained Division for Mitigating Label Sparsity and Noise

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have gained considerable prominence in semi-supervised learning tasks in processing graph-structured data, primarily owing to their message-passing mechanism, which largely relies on the availability of clean labels. However, in real-world scenarios, labels on nodes of graphs are inevitably noisy and sparsely labeled, significantly degrading the performance of GNNs. Exploring robust GNNs for semi-supervised node classification in the presence of noisy and sparse labels remains a critical challenge. Therefore, we propose a novel \textbf{G}raph \textbf{N}eural \textbf{N}etwork with \textbf{C}oarse- and \textbf{F}ine-\textbf{G}rained \textbf{D}ivision for mitigating label sparsity and noise, namely GNN-CFGD. The key idea of GNN-CFGD is reducing the negative impact of noisy labels via coarse- and fine-grained division, along with graph reconstruction. Specifically, we first investigate the effectiveness of linking unlabeled nodes to cleanly labeled nodes, demonstrating that this approach is more effective in combating labeling noise than linking to potentially noisy labeled nodes. Based on this observation, we introduce a Gaussian Mixture Model (GMM) based on the memory effect to perform a coarse-grained division of the given labels into clean and noisy labels. Next, we propose a clean labels oriented link that connects unlabeled nodes to cleanly labeled nodes, aimed at mitigating label sparsity and promoting supervision propagation. Furthermore, to provide refined supervision for noisy labeled nodes and additional supervision for unlabeled nodes, we fine-grain the noisy labeled and unlabeled nodes into two candidate sets based on confidence, respectively. Extensive experiments on various datasets demonstrate the superior effectiveness and robustness of GNN-CFGD.


GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) are prominent for their effectiveness in processing graph data for semi-supervised node classification tasks. Most works of GNNs assume that the observed structure accurately represents the underlying node relationships. However, the graph structure is inevitably noisy or incomplete in reality, which can degrade the quality of graph representations. Therefore, it is imperative to learn a clean graph structure that balances performance and robustness. In this paper, we propose a novel method named \textit{Global-augmented Graph Structure Learning} (GaGSL), guided by the Graph Information Bottleneck (GIB) principle. The key idea behind GaGSL is to learn a compact and informative graph structure for node classification tasks. Specifically, to mitigate the bias caused by relying solely on the original structure, we first obtain augmented features and augmented structure through global feature augmentation and global structure augmentation. We then input the augmented features and augmented structure into a structure estimator with different parameters for optimization and re-definition of the graph structure, respectively. The redefined structures are combined to form the final graph structure. Finally, we employ GIB based on mutual information to guide the optimization of the graph structure to obtain the minimum sufficient graph structure. Comprehensive evaluations across a range of datasets reveal the outstanding performance and robustness of GaGSL compared with the state-of-the-art methods.


DPAUC: Differentially Private AUC Computation in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) has gained significant attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple participants. The prior work on FL has mostly studied how to protect label privacy during model training. However, model evaluation in FL might also lead to potential leakage of private label information. In this work, we propose an evaluation algorithm that can accurately compute the widely used AUC (area under the curve) metric when using the label differential privacy (DP) in FL. Through extensive experiments, we show our algorithms can compute accurate AUCs compared to the ground truth. The code is available at {\url{https://github.com/bytedance/fedlearner/tree/master/example/privacy/DPAUC}}.


Vertical Federated Learning without Revealing Intersection Membership

arXiv.org Artificial Intelligence

Vertical Federated Learning (vFL) allows multiple parties that own different attributes (e.g. features and labels) of the same data entity (e.g. a person) to jointly train a model. To prepare the training data, vFL needs to identify the common data entities shared by all parties. It is usually achieved by Private Set Intersection (PSI) which identifies the intersection of training samples from all parties by using personal identifiable information (e.g. email) as sample IDs to align data instances. As a result, PSI would make sample IDs of the intersection visible to all parties, and therefore each party can know that the data entities shown in the intersection also appear in the other parties, i.e. intersection membership. However, in many real-world privacy-sensitive organizations, e.g. banks and hospitals, revealing membership of their data entities is prohibited. In this paper, we propose a vFL framework based on Private Set Union (PSU) that allows each party to keep sensitive membership information to itself. Instead of identifying the intersection of all training samples, our PSU protocol generates the union of samples as training instances. In addition, we propose strategies to generate synthetic features and labels to handle samples that belong to the union but not the intersection. Through extensive experiments on two real-world datasets, we show our framework can protect the privacy of the intersection membership while maintaining the model utility.


GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

arXiv.org Machine Learning

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. Benefiting from open source under the Apache 2.0 license, GluonCV and GluonNLP have attracted 100 contributors worldwide on GitHub. Models of GluonCV and GluonNLP have been downloaded for more than 1.6 million times in fewer than 10 months.


Multi-Entity Aspect-Based Sentiment Analysis With Context, Entity and Aspect Memory

AAAI Conferences

Inspired by recent works in Aspect-Based Sentiment Analysis (ABSA) on product reviews and faced with more complex posts on social media platforms mentioning multiple entities as well as multiple aspects, we define a novel task called Multi-Entity Aspect-Based Sentiment Analysis (ME-ABSA). This task aims at fine-grained sentiment analysis of (entity, aspect) combinations, making the well-studied ABSA task a special case of it. To address the task, we propose an innovative method that models Context memory, Entity memory and Aspect memory, called CEA method. Our experimental results show that our CEA method achieves a significant gain over several baselines, including the state-of-the-art method for the ABSA task, and their enhanced versions, on datasets for ME-ABSA and ABSA tasks. The in-depth analysis illustrates the significant advantage of the CEA method over baseline methods for several hard-to-predict post types. Furthermore, we show that the CEA method is capable of generalizing to new (entity, aspect) combinations with little loss of accuracy. This observation indicates that data annotation in real applications can be largely simplified.


Image Denoising and Inpainting with Deep Neural Networks

Neural Information Processing Systems

We present a novel approach to low-level vision problems that combines sparse coding and deep networks pre-trained with denoising auto-encoder (DA). We propose an alternative training scheme that successfully adapts DA, originally designed for unsupervised feature learning, to the tasks of image denoising and blind inpainting. Our method achieves state-of-the-art performance in the image denoising task. More importantly, in blind image inpainting task, the proposed method provides solutions to some complex problems that have not been tackled before. Specifically, we can automatically remove complex patterns like superimposed text from an image, rather than simple patterns like pixels missing at random. Moreover, the proposed method does not need the information regarding the region that requires inpainting to be given a priori. Experimental results demonstrate the effectiveness of the proposed method in the tasks of image denoising and blind inpainting. We also show that our new training scheme for DA is more effective and can improve the performance of unsupervised feature learning.