Goto

Collaborating Authors

 Xie, Jingjing


UniPTS: A Unified Framework for Proficient Post-Training Sparsity

arXiv.org Artificial Intelligence

Post-training Sparsity (PTS) is a recently emerged avenue that chases efficient network sparsity with limited data in need. Existing PTS methods, however, undergo significant performance degradation compared with traditional methods that retrain the sparse networks via the whole dataset, especially at high sparsity ratios. In this paper, we attempt to reconcile this disparity by transposing three cardinal factors that profoundly alter the performance of conventional sparsity into the context of PTS. Our endeavors particularly comprise (1) A base-decayed sparsity objective that promotes efficient knowledge transferring from dense network to the sparse counterpart. (2) A reducing-regrowing search algorithm designed to ascertain the optimal sparsity distribution while circumventing overfitting to the small calibration set in PTS. (3) The employment of dynamic sparse training predicated on the preceding aspects, aimed at comprehensively optimizing the sparsity structure while ensuring training stability. Our proposed framework, termed UniPTS, is validated to be much superior to existing PTS methods across extensive benchmarks. As an illustration, it amplifies the performance of POT, a recently proposed recipe, from 3.9% to 68.6% when pruning ResNet-50 at 90% sparsity ratio on ImageNet. We release the code of our paper at https://github.com/xjjxmu/UniPTS.


Challenges in Representation Learning: A report on three machine learning contests

arXiv.org Machine Learning

The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.


Horizontal and Vertical Ensemble with Deep Representation for Classification

arXiv.org Machine Learning

Representation learning, especially which by using deep learning, has been widely applied in classification. However, how to use limited size of labeled data to achieve good classification performance with deep neural network, and how can the learned features further improve classification remain indefinite. In this paper, we propose Horizontal Voting Vertical Voting and Horizontal Stacked Ensemble methods to improve the classification performance of deep neural networks. In the ICML 2013 Black Box Challenge, via using these methods independently, Bing Xu achieved 3rd in public leaderboard, and 7th in private leaderboard; Jingjing Xie achieved 4th in public leaderboard, and 5th in private leaderboard.