Goto

Collaborating Authors

 Xie, Guanwen


Never too Prim to Swim: An LLM-Enhanced RL-based Adaptive S-Surface Controller for AUVs under Extreme Sea Conditions

arXiv.org Artificial Intelligence

The adaptivity and maneuvering capabilities of Autonomous Underwater Vehicles (AUVs) have drawn significant attention in oceanic research, due to the unpredictable disturbances and strong coupling among the AUV's degrees of freedom. In this paper, we developed large language model (LLM)-enhanced reinforcement learning (RL)-based adaptive S-surface controller for AUVs. Specifically, LLMs are introduced for the joint optimization of controller parameters and reward functions in RL training. Using multi-modal and structured explicit task feedback, LLMs enable joint adjustments, balance multiple objectives, and enhance task-oriented performance and adaptability. In the proposed controller, the RL policy focuses on upper-level tasks, outputting task-oriented high-level commands that the S-surface controller then converts into control signals, ensuring cancellation of nonlinear effects and unpredictable external disturbances in extreme sea conditions. Under extreme sea conditions involving complex terrain, waves, and currents, the proposed controller demonstrates superior performance and adaptability in high-level tasks such as underwater target tracking and data collection, outperforming traditional PID and SMC controllers.


Is FISHER All You Need in The Multi-AUV Underwater Target Tracking Task?

arXiv.org Artificial Intelligence

It is significant to employ multiple autonomous underwater vehicles (AUVs) to execute the underwater target tracking task collaboratively. However, it's pretty challenging to meet various prerequisites utilizing traditional control methods. Therefore, we propose an effective two-stage learning from demonstrations training framework, FISHER, to highlight the adaptability of reinforcement learning (RL) methods in the multi-AUV underwater target tracking task, while addressing its limitations such as extensive requirements for environmental interactions and the challenges in designing reward functions. The first stage utilizes imitation learning (IL) to realize policy improvement and generate offline datasets. To be specific, we introduce multi-agent discriminator-actor-critic based on improvements of the generative adversarial IL algorithm and multi-agent IL optimization objective derived from the Nash equilibrium condition. Then in the second stage, we develop multi-agent independent generalized decision transformer, which analyzes the latent representation to match the future states of high-quality samples rather than reward function, attaining further enhanced policies capable of handling various scenarios. Besides, we propose a simulation to simulation demonstration generation procedure to facilitate the generation of expert demonstrations in underwater environments, which capitalizes on traditional control methods and can easily accomplish the domain transfer to obtain demonstrations. Extensive simulation experiments from multiple scenarios showcase that FISHER possesses strong stability, multi-task performance and capability of generalization.