Xiaochun Cao
Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation
Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, Ming-Hsuan Yang
In this paper, we present a deep convolutional neural network to capture the inherent properties of image degradation, which can handle different kernels and saturated pixels in a unified framework. The proposed neural network is motivated by the low-rank property of pseudo-inverse kernels. Specifically, we first compute a generalized low-rank approximation to a large number of blur kernels, and then use separable filters to initialize the convolutional parameters in the network. Our analysis shows that the estimated decomposed matrices contain the most essential information of an input kernel, which ensures the proposed network to handle various blurs in a unified framework and generate high-quality deblurring results. Experimental results on benchmark datasets with noisy and saturated pixels demonstrate that the proposed deconvolution approach relying on generalized low-rank approximation performs favorably against the state-of-the-arts.
Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer
Zhiyong Yang, Qianqian Xu, Yangbangyan Jiang, Xiaochun Cao, Qingming Huang
In multi-task learning, a major challenge springs from a notorious issue known as negative transfer, which refers to the phenomenon that sharing the knowledge with dissimilar and hard tasks often results in a worsened performance. To circumvent this issue, we propose a novel multi-task learning method, which simultaneously learns latent task representations and a block-diagonal Latent Task Assignment Matrix (LTAM).
iSplit LBI: Individualized Partial Ranking with Ties via Split LBI
Qianqian Xu, Xinwei Sun, Zhiyong Yang, Xiaochun Cao, Qingming Huang, Yuan Yao
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different individuals often hold distinct preferences. It might be misleading to merely look at a global partial ranking while ignoring personal diversity. In this paper, instead of learning a global ranking which is agreed with the consensus, we pursue the tie-aware partial ranking from an individualized perspective. Particularly, we formulate a unified framework which not only can be used for individualized partial ranking prediction, but also be helpful for abnormal user selection.
Generalized Block-Diagonal Structure Pursuit: Learning Soft Latent Task Assignment against Negative Transfer
Zhiyong Yang, Qianqian Xu, Yangbangyan Jiang, Xiaochun Cao, Qingming Huang
In multi-task learning, a major challenge springs from a notorious issue known as negative transfer, which refers to the phenomenon that sharing the knowledge with dissimilar and hard tasks often results in a worsened performance. To circumvent this issue, we propose a novel multi-task learning method, which simultaneously learns latent task representations and a block-diagonal Latent Task Assignment Matrix (LTAM).
Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation
Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, Ming-Hsuan Yang
In this paper, we present a deep convolutional neural network to capture the inherent properties of image degradation, which can handle different kernels and saturated pixels in a unified framework. The proposed neural network is motivated by the low-rank property of pseudo-inverse kernels. Specifically, we first compute a generalized low-rank approximation to a large number of blur kernels, and then use separable filters to initialize the convolutional parameters in the network. Our analysis shows that the estimated decomposed matrices contain the most essential information of an input kernel, which ensures the proposed network to handle various blurs in a unified framework and generate high-quality deblurring results. Experimental results on benchmark datasets with noisy and saturated pixels demonstrate that the proposed deconvolution approach relying on generalized low-rank approximation performs favorably against the state-of-the-arts.