Xiao, Zhenxiang
Ophtha-LLaMA2: A Large Language Model for Ophthalmology
Zhao, Huan, Ling, Qian, Pan, Yi, Zhong, Tianyang, Hu, Jin-Yu, Yao, Junjie, Xiao, Fengqian, Xiao, Zhenxiang, Zhang, Yutong, Xu, San-Hua, Wu, Shi-Nan, Kang, Min, Wu, Zihao, Liu, Zhengliang, Jiang, Xi, Liu, Tianming, Shao, Yi
In recent years, pre-trained large language models (LLMs) have achieved tremendous success in the field of Natural Language Processing (NLP). Prior studies have primarily focused on general and generic domains, with relatively less research on specialized LLMs in the medical field. The specialization and high accuracy requirements for diagnosis in the medical field, as well as the challenges in collecting large-scale data, have constrained the application and development of LLMs in medical scenarios. In the field of ophthalmology, clinical diagnosis mainly relies on doctors' interpretation of reports and making diagnostic decisions. In order to take advantage of LLMs to provide decision support for doctors, we collected three modalities of ophthalmic report data and fine-tuned the LLaMA2 model, successfully constructing an LLM termed the "Ophtha-LLaMA2" specifically tailored for ophthalmic disease diagnosis. Inference test results show that even with a smaller fine-tuning dataset, Ophtha-LLaMA2 performs significantly better in ophthalmic diagnosis compared to other LLMs. It demonstrates that the Ophtha-LLaMA2 exhibits satisfying accuracy and efficiency in ophthalmic disease diagnosis, making it a valuable tool for ophthalmologists to provide improved diagnostic support for patients. This research provides a useful reference for the application of LLMs in the field of ophthalmology, while showcasing the immense potential and prospects in this domain.
Holistic Evaluation of GPT-4V for Biomedical Imaging
Liu, Zhengliang, Jiang, Hanqi, Zhong, Tianyang, Wu, Zihao, Ma, Chong, Li, Yiwei, Yu, Xiaowei, Zhang, Yutong, Pan, Yi, Shu, Peng, Lyu, Yanjun, Zhang, Lu, Yao, Junjie, Dong, Peixin, Cao, Chao, Xiao, Zhenxiang, Wang, Jiaqi, Zhao, Huan, Xu, Shaochen, Wei, Yaonai, Chen, Jingyuan, Dai, Haixing, Wang, Peilong, He, Hao, Wang, Zewei, Wang, Xinyu, Zhang, Xu, Zhao, Lin, Liu, Yiheng, Zhang, Kai, Yan, Liheng, Sun, Lichao, Liu, Jun, Qiang, Ning, Ge, Bao, Cai, Xiaoyan, Zhao, Shijie, Hu, Xintao, Yuan, Yixuan, Li, Gang, Zhang, Shu, Zhang, Xin, Jiang, Xi, Zhang, Tuo, Shen, Dinggang, Li, Quanzheng, Liu, Wei, Li, Xiang, Zhu, Dajiang, Liu, Tianming
In this paper, we present a large-scale evaluation probing GPT-4V's capabilities and limitations for biomedical image analysis. GPT-4V represents a breakthrough in artificial general intelligence (AGI) for computer vision, with applications in the biomedical domain. We assess GPT-4V's performance across 16 medical imaging categories, including radiology, oncology, ophthalmology, pathology, and more. Tasks include modality recognition, anatomy localization, disease diagnosis, report generation, and lesion detection. The extensive experiments provide insights into GPT-4V's strengths and weaknesses. Results show GPT-4V's proficiency in modality and anatomy recognition but difficulty with disease diagnosis and localization. GPT-4V excels at diagnostic report generation, indicating strong image captioning skills. While promising for biomedical imaging AI, GPT-4V requires further enhancement and validation before clinical deployment. We emphasize responsible development and testing for trustworthy integration of biomedical AGI. This rigorous evaluation of GPT-4V on diverse medical images advances understanding of multimodal large language models (LLMs) and guides future work toward impactful healthcare applications.