Not enough data to create a plot.
Try a different view from the menu above.
Xiao, Yan
On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations
Hundal, Rajdeep Singh, Xiao, Yan, Cao, Xiaochun, Dong, Jin Song, Rigger, Manuel
--Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment. Numerous implementations of the state-of-the-art algorithms responsible for training these agents, like the Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, currently exist. However, studies make the mistake of assuming implementations of the same algorithm to be consistent and thus, interchangeable. In this paper, through a differential testing lens, we present the results of studying the extent of implementation inconsistencies, their effect on the implementations' performance, as well as their impact on the conclusions of prior studies under the assumption of interchangeable implementations. The outcomes of our differential tests showed significant discrepancies between the tested algorithm implementations, indicating that they are not interchangeable. In particular, out of the five PPO implementations tested on 56 games, three implementations achieved superhuman performance for 50% of their total trials while the other two implementations only achieved superhuman performance for less than 15% of their total trials. Furthermore, the performance among the high-performing PPO implementations was found to differ significantly in nine games. As part of a meticulous manual analysis of the implementations' source code, we analyzed implementation discrepancies and determined that code-level inconsistencies primarily caused these discrepancies. Lastly, we replicated a study and showed that this assumption of implementation interchangeability was sufficient to flip experiment outcomes. Therefore, this calls for a shift in how implementations are being used. In addition, we recommend for (1) replicability studies for studies mistakenly assuming implementation interchangeability, (2) DRL researchers and practitioners to adopt * Corresponding author. Personal use of this material is permitted. I NTRODUCTION Deep Learning (DL) and Deep Reinforcement Learning (DRL) are popular paradigms of Artificial Intelligence (AI) that use neural networks to solve a problem.
Probabilistic Quantum SVM Training on Ising Machine
He, Haoqi, Xiao, Yan
Quantum computing holds significant potential to accelerate machine learning algorithms, especially in solving optimization problems like those encountered in Support Vector Machine (SVM) training. However, current QUBO-based Quantum SVM (QSVM) methods rely solely on binary optimal solutions, limiting their ability to identify fuzzy boundaries in data. Additionally, the limited qubit count in contemporary quantum devices constrains training on larger datasets. In this paper, we propose a probabilistic quantum SVM training framework suitable for Coherent Ising Machines (CIMs). By formulating the SVM training problem as a QUBO model, we leverage CIMs' energy minimization capabilities and introduce a Boltzmann distribution-based probabilistic approach to better approximate optimal SVM solutions, enhancing robustness. To address qubit limitations, we employ batch processing and multi-batch ensemble strategies, enabling small-scale quantum devices to train SVMs on larger datasets and support multi-class classification tasks via a one-vs-one approach. Our method is validated through simulations and real-machine experiments on binary and multi-class datasets. On the banknote binary classification dataset, our CIM-based QSVM, utilizing an energy-based probabilistic approach, achieved up to 20% higher accuracy compared to the original QSVM, while training up to $10^4$ times faster than simulated annealing methods. Compared with classical SVM, our approach either matched or reduced training time. On the IRIS three-class dataset, our improved QSVM outperformed existing QSVM models in all key metrics. As quantum technology advances, increased qubit counts are expected to further enhance QSVM performance relative to classical SVM.
HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
He, Haoqi, Xiao, Yan
Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose \textbf{HiQ-Lip}, a hybrid quantum-classical hierarchical method that leverages Coherent Ising Machines (CIMs) to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization (QUBO) problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
RITFIS: Robust input testing framework for LLMs-based intelligent software
Xiao, Mingxuan, Xiao, Yan, Dong, Hai, Ji, Shunhui, Zhang, Pengcheng
The dependence of Natural Language Processing (NLP) intelligent software on Large Language Models (LLMs) is increasingly prominent, underscoring the necessity for robustness testing. Current testing methods focus solely on the robustness of LLM-based software to prompts. Given the complexity and diversity of real-world inputs, studying the robustness of LLMbased software in handling comprehensive inputs (including prompts and examples) is crucial for a thorough understanding of its performance. To this end, this paper introduces RITFIS, a Robust Input Testing Framework for LLM-based Intelligent Software. To our knowledge, RITFIS is the first framework designed to assess the robustness of LLM-based intelligent software against natural language inputs. This framework, based on given threat models and prompts, primarily defines the testing process as a combinatorial optimization problem. Successful test cases are determined by a goal function, creating a transformation space for the original examples through perturbation means, and employing a series of search methods to filter cases that meet both the testing objectives and language constraints. RITFIS, with its modular design, offers a comprehensive method for evaluating the robustness of LLMbased intelligent software. RITFIS adapts 17 automated testing methods, originally designed for Deep Neural Network (DNN)-based intelligent software, to the LLM-based software testing scenario. It demonstrates the effectiveness of RITFIS in evaluating LLM-based intelligent software through empirical validation. However, existing methods generally have limitations, especially when dealing with lengthy texts and structurally complex threat models. Therefore, we conducted a comprehensive analysis based on five metrics and provided insightful testing method optimization strategies, benefiting both researchers and everyday users.
LEAP: Efficient and Automated Test Method for NLP Software
Xiao, Mingxuan, Xiao, Yan, Dong, Hai, Ji, Shunhui, Zhang, Pengcheng
The widespread adoption of DNNs in NLP software has highlighted the need for robustness. Researchers proposed various automatic testing techniques for adversarial test cases. However, existing methods suffer from two limitations: weak error-discovering capabilities, with success rates ranging from 0% to 24.6% for BERT-based NLP software, and time inefficiency, taking 177.8s to 205.28s per test case, making them challenging for time-constrained scenarios. To address these issues, this paper proposes LEAP, an automated test method that uses LEvy flight-based Adaptive Particle swarm optimization integrated with textual features to generate adversarial test cases. Specifically, we adopt Levy flight for population initialization to increase the diversity of generated test cases. We also design an inertial weight adaptive update operator to improve the efficiency of LEAP's global optimization of high-dimensional text examples and a mutation operator based on the greedy strategy to reduce the search time. We conducted a series of experiments to validate LEAP's ability to test NLP software and found that the average success rate of LEAP in generating adversarial test cases is 79.1%, which is 6.1% higher than the next best approach (PSOattack). While ensuring high success rates, LEAP significantly reduces time overhead by up to 147.6s compared to other heuristic-based methods. Additionally, the experimental results demonstrate that LEAP can generate more transferable test cases and significantly enhance the robustness of DNN-based systems.
Towards Stealthy Backdoor Attacks against Speech Recognition via Elements of Sound
Cai, Hanbo, Zhang, Pengcheng, Dong, Hai, Xiao, Yan, Koffas, Stefanos, Li, Yiming
Deep neural networks (DNNs) have been widely and successfully adopted and deployed in various applications of speech recognition. Recently, a few works revealed that these models are vulnerable to backdoor attacks, where the adversaries can implant malicious prediction behaviors into victim models by poisoning their training process. In this paper, we revisit poison-only backdoor attacks against speech recognition. We reveal that existing methods are not stealthy since their trigger patterns are perceptible to humans or machine detection. This limitation is mostly because their trigger patterns are simple noises or separable and distinctive clips. Motivated by these findings, we propose to exploit elements of sound ($e.g.$, pitch and timbre) to design more stealthy yet effective poison-only backdoor attacks. Specifically, we insert a short-duration high-pitched signal as the trigger and increase the pitch of remaining audio clips to `mask' it for designing stealthy pitch-based triggers. We manipulate timbre features of victim audios to design the stealthy timbre-based attack and design a voiceprint selection module to facilitate the multi-backdoor attack. Our attacks can generate more `natural' poisoned samples and therefore are more stealthy. Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our attacks under different settings ($e.g.$, all-to-one, all-to-all, clean-label, physical, and multi-backdoor settings) and their stealthiness. The code for reproducing main experiments are available at \url{https://github.com/HanboCai/BadSpeech_SoE}.
VSVC: Backdoor attack against Keyword Spotting based on Voiceprint Selection and Voice Conversion
Cai, Hanbo, Zhang, Pengcheng, Dong, Hai, Xiao, Yan, Ji, Shunhui
Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.
PBSM: Backdoor attack against Keyword spotting based on pitch boosting and sound masking
Cai, Hanbo, Zhang, Pengcheng, Dong, Hai, Xiao, Yan, Ji, Shunhui
Keyword spotting (KWS) has been widely used in various speech control scenarios. The training of KWS is usually based on deep neural networks and requires a large amount of data. Manufacturers often use third-party data to train KWS. However, deep neural networks are not sufficiently interpretable to manufacturers, and attackers can manipulate third-party training data to plant backdoors during the model training. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Pitch Boosting and Sound Masking for KWS, called PBSM. Experimental results demonstrated that PBSM is feasible to achieve an average attack success rate close to 90% in three victim models when poisoning less than 1% of the training data.
Quiver Mutations, Seiberg Duality and Machine Learning
Bao, Jiakang, Franco, Sebastián, He, Yang-Hui, Hirst, Edward, Musiker, Gregg, Xiao, Yan
We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly divided into the binary determination of whether a pair of theories picked from a series of duality classes are dual to each other, as well as the multi-class determination of the duality class to which a given theory belongs. We study how the performance of machine learning depends on several variables, including number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of Naive Bayes classifiers versus Convolutional Neural Networks. Finally, we also investigate how the results are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy and confidence can be achieved.
Fast Approximate Nearest Neighbor Search via k-Diverse Nearest Neighbor Graph
Xiao, Yan (University of Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences ) | Guo, Jiafeng (University of Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences ) | Lan, Yanyan (University of Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences) | Xu, Jun (University of Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences) | Cheng, Xueqi (University of Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences)
Approximate nearest neighbor search is a fundamental problem and has been studied for a few decades. Recently graph-based indexing methods have demonstrated their great efficiency, whose main idea is to construct neighborhood graph offline and perform a greedy search starting from some sampled points of the graph online. Most existing graph-based methods focus on either the precise k-nearest neighbor (k-NN) graph which has good exploitation ability, or the diverse graph which has good exploration ability. In this paper, we propose the k-diverse nearest neighbor (k-DNN) graph, which balances the precision and diversity of the graph, leading to good exploitation and exploration abilities simultaneously. We introduce an efficient indexing algorithm for the construction of the k-DNN graph inspired by a well-known diverse ranking algorithm in information retrieval (IR). Experimental results show that our method can outperform both state-of-the-art precise graph and diverse graph methods.