Xiao, Rong
Exploring a Principled Framework for Deep Subspace Clustering
Meng, Xianghan, Huang, Zhiyuan, He, Wei, Qi, Xianbiao, Xiao, Rong, Li, Chun-Guang
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
Neural Normalized Cut: A Differential and Generalizable Approach for Spectral Clustering
He, Wei, Zhang, Shangzhi, Li, Chun-Guang, Qi, Xianbiao, Xiao, Rong, Guo, Jun
Spectral clustering, as a popular tool for data clustering, requires an eigen-decomposition step on a given affinity to obtain the spectral embedding. Nevertheless, such a step suffers from the lack of generalizability and scalability. Moreover, the obtained spectral embeddings can hardly provide a good approximation to the ground-truth partition and thus a k-means step is adopted to quantize the embedding. In this paper, we propose a simple yet effective scalable and generalizable approach, called Neural Normalized Cut (NeuNcut), to learn the clustering membership for spectral clustering directly. In NeuNcut, we properly reparameterize the unknown cluster membership via a neural network, and train the neural network via stochastic gradient descent with a properly relaxed normalized cut loss. As a result, our NeuNcut enjoys a desired generalization ability to directly infer clustering membership for out-of-sample unseen data and hence brings us an efficient way to handle clustering task with ultra large-scale data. We conduct extensive experiments on both synthetic data and benchmark datasets and experimental results validate the effectiveness and the superiority of our approach. Our code is available at: https://github.com/hewei98/NeuNcut.
Enhancing Scene Classification in Cloudy Image Scenarios: A Collaborative Transfer Method with Information Regulation Mechanism using Optical Cloud-Covered and SAR Remote Sensing Images
Wang, Yuze, Xiao, Rong, Li, Haifeng, Belgiu, Mariana, Tao, Chao
In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS
BiGR: Harnessing Binary Latent Codes for Image Generation and Improved Visual Representation Capabilities
Hao, Shaozhe, Liu, Xuantong, Qi, Xianbiao, Zhao, Shihao, Zi, Bojia, Xiao, Rong, Han, Kai, Wong, Kwan-Yee K.
We introduce BiGR, a novel conditional image generation model using compact binary latent codes for generative training, focusing on enhancing both generation and representation capabilities. BiGR is the first conditional generative model that unifies generation and discrimination within the same framework. BiGR features a binary tokenizer, a masked modeling mechanism, and a binary transcoder for binary code prediction. Additionally, we introduce a novel entropy-ordered sampling method to enable efficient image generation. Extensive experiments validate BiGR's superior performance in generation quality, as measured by FID-50k, and representation capabilities, as evidenced by linear-probe accuracy. Moreover, BiGR showcases zero-shot generalization across various vision tasks, enabling applications such as image inpainting, outpainting, editing, interpolation, and enrichment, without the need for structural modifications. Our findings suggest that BiGR unifies generative and discriminative tasks effectively, paving the way for further advancements in the field. We further enable BiGR to perform text-to-image generation, showcasing its potential for broader applications.
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
Yi, Hanling, Lin, Feng, Li, Hongbin, Ning, Peiyang, Yu, Xiaotian, Xiao, Rong
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose \textbf{S}mart \textbf{P}arallel \textbf{A}uto-\textbf{C}orrect d\textbf{E}coding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
BiTA: Bi-Directional Tuning for Lossless Acceleration in Large Language Models
Lin, Feng, Yi, Hanling, Li, Hongbin, Yang, Yifan, Yu, Xiaotian, Lu, Guangming, Xiao, Rong
Large language models (LLMs) commonly employ autoregressive generation during inference, leading to high memory bandwidth demand and consequently extended latency. To mitigate this inefficiency, we present Bi-directional Tuning for lossless Acceleration (BiTA), an innovative method expediting LLMs via streamlined semi-autoregressive generation and draft verification. Inspired by the concept of prompt tuning, we enhance LLMs with a parameter-efficient design called bi-directional tuning for the capability in semi-autoregressive generation. Employing efficient tree-based decoding, the models perform draft candidate generation and verification in parallel, ensuring outputs identical to their autoregressive counterparts under greedy sampling. BiTA serves as a lightweight plug-in module, seamlessly boosting the inference efficiency of existing LLMs without requiring additional assistance models or incurring significant extra memory costs. Applying the proposed BiTA, LLaMA-2-70B-Chat achieves a 2.7$\times$ speedup on the MT-Bench benchmark. Extensive experiments confirm our method surpasses state-of-the-art acceleration techniques.
NAR-Former V2: Rethinking Transformer for Universal Neural Network Representation Learning
Yi, Yun, Zhang, Haokui, Xiao, Rong, Wang, Nannan, Wang, Xiaoyu
As more deep learning models are being applied in real-world applications, there is a growing need for modeling and learning the representations of neural networks themselves. An efficient representation can be used to predict target attributes of networks without the need for actual training and deployment procedures, facilitating efficient network deployment and design. Recently, inspired by the success of Transformer, some Transformer-based representation learning frameworks have been proposed and achieved promising performance in handling cell-structured models. However, graph neural network (GNN) based approaches still dominate the field of learning representation for the entire network. In this paper, we revisit Transformer and compare it with GNN to analyse their different architecture characteristics. We then propose a modified Transformer-based universal neural network representation learning model NAR-Former V2. It can learn efficient representations from both cell-structured networks and entire networks. Specifically, we first take the network as a graph and design a straightforward tokenizer to encode the network into a sequence. Then, we incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture. Additionally, we introduce a series of simple yet effective modifications to enhance the ability of the Transformer in learning representation from graph structures. Our proposed method surpasses the GNN-based method NNLP by a significant margin in latency estimation on the NNLQP dataset. Furthermore, regarding accuracy prediction on the NASBench101 and NASBench201 datasets, our method achieves highly comparable performance to other state-of-the-art methods.
Using Global Land Cover Product as Prompt for Cropland Mapping via Visual Foundation Model
Tao, Chao, Hu, Aoran, Xiao, Rong, Li, Haifeng, Wang, Yuze
Data-driven deep learning methods have shown great potential in cropland mapping. However, due to multiple factors such as attributes of cropland (topography, climate, crop type) and imaging conditions (viewing angle, illumination, scale), croplands under different scenes demonstrate a great domain gap. This makes it difficult for models trained in the specific scenes to directly generalize to other scenes. A common way to handle this problem is through the "Pretrain+Fine-tuning" paradigm. Unfortunately, considering the variety of features of cropland that are affected by multiple factors, it is hardly to handle the complex domain gap between pre-trained data and target data using only sparse fine-tuned samples as general constraints. Moreover, as the number of model parameters grows, fine-tuning is no longer an easy and low-cost task. With the emergence of prompt learning via visual foundation models, the "Pretrain+Prompting" paradigm redesigns the optimization target by introducing individual prompts for each single sample. This simplifies the domain adaption from generic to specific scenes during model reasoning processes. Therefore, we introduce the "Pretrain+Prompting" paradigm to interpreting cropland scenes and design the auto-prompting (APT) method based on freely available global land cover product. It can achieve a fine-grained adaptation process from generic scenes to specialized cropland scenes without introducing additional label costs. To our best knowledge, this work pioneers the exploration of the domain adaption problems for cropland mapping under prompt learning perspectives. Our experiments using two sub-meter cropland datasets from southern and northern China demonstrated that the proposed method via visual foundation models outperforms traditional supervised learning and fine-tuning approaches in the field of remote sensing.
Improving Text Matching in E-Commerce Search with A Rationalizable, Intervenable and Fast Entity-Based Relevance Model
Cai, Jiong, Jiang, Yong, Zhang, Yue, Jiang, Chengyue, Yu, Ke, Ji, Jianhui, Xiao, Rong, Tang, Haihong, Wang, Tao, Huang, Zhongqiang, Xie, Pengjun, Huang, Fei, Tu, Kewei
Discovering the intended items of user queries from a massive repository of items is one of the main goals of an e-commerce search system. Relevance prediction is essential to the search system since it helps improve performance. When online serving a relevance model, the model is required to perform fast and accurate inference. Currently, the widely used models such as Bi-encoder and Cross-encoder have their limitations in accuracy or inference speed respectively. In this work, we propose a novel model called the Entity-Based Relevance Model (EBRM). We identify the entities contained in an item and decompose the QI (query-item) relevance problem into multiple QE (query-entity) relevance problems; we then aggregate their results to form the QI prediction using a soft logic formulation. The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy as well as cache QE predictions for fast online inference. Utilizing soft logic makes the prediction procedure interpretable and intervenable. We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance. The proposed method is evaluated on labeled data from e-commerce websites. Empirical results show that it achieves promising improvements with computation efficiency.
1st Place Solution for ICDAR 2021 Competition on Mathematical Formula Detection
Zhong, Yuxiang, Qi, Xianbiao, Li, Shanjun, Gu, Dengyi, Chen, Yihao, Ning, Peiyang, Xiao, Rong
In this technical report, we present our 1st place solution for the ICDAR 2021 competition on mathematical formula detection (MFD). The MFD task has three key challenges including a large scale span, large variation of the ratio between height and width, and rich character set and mathematical expressions. Considering these challenges, we used Generalized Focal Loss (GFL), an anchor-free method, instead of the anchor-based method, and prove the Adaptive Training Sampling Strategy (ATSS) and proper Feature Pyramid Network (FPN) can well solve the important issue of scale variation. Meanwhile, we also found some tricks, e.g., Deformable Convolution Network (DCN), SyncBN, and Weighted Box Fusion (WBF), were effective in MFD task. Our proposed method ranked 1st in the final 15 teams.