Xiao, Chuan
Scardina: Scalable Join Cardinality Estimation by Multiple Density Estimators
Ito, Ryuichi, Sasaki, Yuya, Xiao, Chuan, Onizuka, Makoto
In recent years, machine learning-based cardinality estimation methods are replacing traditional methods. This change is expected to contribute to one of the most important applications of cardinality estimation, the query optimizer, to speed up query processing. However, none of the existing methods do not precisely estimate cardinalities when relational schemas consist of many tables with strong correlations between tables/attributes. This paper describes that multiple density estimators can be combined to effectively target the cardinality estimation of data with large and complex schemas having strong correlations. We propose Scardina, a new join cardinality estimation method using multiple partitioned models based on the schema structure.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-Based Approach
Dong, Yuyang, Takeoka, Kunihiro, Xiao, Chuan, Oyamada, Masafumi
Finding joinable tables in data lakes is key procedure in many applications such as data integration, data augmentation, data analysis, and data market. Traditional approaches that find equi-joinable tables are unable to deal with misspellings and different formats, nor do they capture any semantic joins. In this paper, we propose PEXESO, a framework for joinable table discovery in data lakes. We embed textual values as high-dimensional vectors and join columns under similarity predicates on high-dimensional vectors, hence to address the limitations of equi-join approaches and identify more meaningful results. To efficiently find joinable tables with similarity, we propose a block-and-verify method that utilizes pivot-based filtering. A partitioning technique is developed to cope with the case when the data lake is large and the index cannot fit in main memory. An experimental evaluation on real datasets shows that our solution identifies substantially more tables than equi-joins and outperforms other similarity-based options, and the join results are useful in data enrichment for machine learning tasks. The experiments also demonstrate the efficiency of the proposed method.
Monotonic Cardinality Estimation of Similarity Selection: A Deep Learning Approach
Wang, Yaoshu, Xiao, Chuan, Qin, Jianbin, Cao, Xin, Sun, Yifang, Wang, Wei, Onizuka, Makoto
Due to the outstanding capability of capturing underlying data distributions, deep learning techniques have been recently utilized for a series of traditional database problems. In this paper, we investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection. Answering this problem accurately and efficiently is essential to many data management applications, especially for query optimization. Moreover, in some applications the estimated cardinality is supposed to be consistent and interpretable. Hence a monotonic estimation w.r.t. the query threshold is preferred. We propose a novel and generic method that can be applied to any data type and distance function. Our method consists of a feature extraction model and a regression model. The feature extraction model transforms original data and threshold to a Hamming space, in which a deep learning-based regression model is utilized to exploit the incremental property of cardinality w.r.t. the threshold for both accuracy and monotonicity. We develop a training strategy tailored to our model as well as techniques for fast estimation. We also discuss how to handle updates. We demonstrate the accuracy and the efficiency of our method through experiments, and show how it improves the performance of a query optimizer.