Goto

Collaborating Authors

 Xiao, Chaowei


HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection

arXiv.org Artificial Intelligence

The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin.


AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases

arXiv.org Artificial Intelligence

LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.


UniGen: A Unified Framework for Textual Dataset Generation Using Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents UniGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. UniGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, UniGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by UniGen, and each module within UniGen plays a critical role in this enhancement. Additionally, UniGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that UniGen effectively supports dynamic and evolving benchmarking, and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.


AI Risk Management Should Incorporate Both Safety and Security

arXiv.org Artificial Intelligence

The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.


Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors

arXiv.org Artificial Intelligence

Large language models have become increasingly prominent, also signaling a shift towards multimodality as the next frontier in artificial intelligence, where their embeddings are harnessed as prompts to generate textual content. Vision-language models (VLMs) stand at the forefront of this advancement, offering innovative ways to combine visual and textual data for enhanced understanding and interaction. However, this integration also enlarges the attack surface. Patch-based adversarial attack is considered the most realistic threat model in physical vision applications, as demonstrated in many existing literature. In this paper, we propose to address patched visual prompt injection, where adversaries exploit adversarial patches to generate target content in VLMs. Our investigation reveals that patched adversarial prompts exhibit sensitivity to pixel-wise randomization, a trait that remains robust even against adaptive attacks designed to counteract such defenses. Leveraging this insight, we introduce SmoothVLM, a defense mechanism rooted in smoothing techniques, specifically tailored to protect VLMs from the threat of patched visual prompt injectors. Our framework significantly lowers the attack success rate to a range between 0% and 5.0% on two leading VLMs, while achieving around 67.3% to 95.0% context recovery of the benign images, demonstrating a balance between security and usability.


Don't Listen To Me: Understanding and Exploring Jailbreak Prompts of Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in generative AI have enabled ubiquitous access to large language models (LLMs). Empowered by their exceptional capabilities to understand and generate human-like text, these models are being increasingly integrated into our society. At the same time, there are also concerns on the potential misuse of this powerful technology, prompting defensive measures from service providers. To overcome such protection, jailbreaking prompts have recently emerged as one of the most effective mechanisms to circumvent security restrictions and elicit harmful content originally designed to be prohibited. Due to the rapid development of LLMs and their ease of access via natural languages, the frontline of jailbreak prompts is largely seen in online forums and among hobbyists. To gain a better understanding of the threat landscape of semantically meaningful jailbreak prompts, we systemized existing prompts and measured their jailbreak effectiveness empirically. Further, we conducted a user study involving 92 participants with diverse backgrounds to unveil the process of manually creating jailbreak prompts. We observed that users often succeeded in jailbreak prompts generation regardless of their expertise in LLMs. Building on the insights from the user study, we also developed a system using AI as the assistant to automate the process of jailbreak prompt generation.


AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting

arXiv.org Artificial Intelligence

With the advent and widespread deployment of Multimodal Large Language Models (MLLMs), the imperative to ensure their safety has become increasingly pronounced. However, with the integration of additional modalities, MLLMs are exposed to new vulnerabilities, rendering them prone to structured-based jailbreak attacks, where semantic content (e.g., "harmful text") has been injected into the images to mislead MLLMs. In this work, we aim to defend against such threats. Specifically, we propose \textbf{Ada}ptive \textbf{Shield} Prompting (\textbf{AdaShield}), which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks without fine-tuning MLLMs or training additional modules (e.g., post-stage content detector). Initially, we present a manually designed static defense prompt, which thoroughly examines the image and instruction content step by step and specifies response methods to malicious queries. Furthermore, we introduce an adaptive auto-refinement framework, consisting of a target MLLM and a LLM-based defense prompt generator (Defender). These components collaboratively and iteratively communicate to generate a defense prompt. Extensive experiments on the popular structure-based jailbreak attacks and benign datasets show that our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks without compromising the model's general capabilities evaluated on standard benign tasks. Our code is available at https://github.com/rain305f/AdaShield.


Automatic and Universal Prompt Injection Attacks against Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) excel in processing and generating human language, powered by their ability to interpret and follow instructions. However, their capabilities can be exploited through prompt injection attacks. These attacks manipulate LLM-integrated applications into producing responses aligned with the attacker's injected content, deviating from the user's actual requests. The substantial risks posed by these attacks underscore the need for a thorough understanding of the threats. Yet, research in this area faces challenges due to the lack of a unified goal for such attacks and their reliance on manually crafted prompts, complicating comprehensive assessments of prompt injection robustness. We introduce a unified framework for understanding the objectives of prompt injection attacks and present an automated gradient-based method for generating highly effective and universal prompt injection data, even in the face of defensive measures. With only five training samples (0.3% relative to the test data), our attack can achieve superior performance compared with baselines. Our findings emphasize the importance of gradient-based testing, which can avoid overestimation of robustness, especially for defense mechanisms.


A New Era in LLM Security: Exploring Security Concerns in Real-World LLM-based Systems

arXiv.org Artificial Intelligence

Large Language Model (LLM) systems are inherently compositional, with individual LLM serving as the core foundation with additional layers of objects such as plugins, sandbox, and so on. Along with the great potential, there are also increasing concerns over the security of such probabilistic intelligent systems. However, existing studies on LLM security often focus on individual LLM, but without examining the ecosystem through the lens of LLM systems with other objects (e.g., Frontend, Webtool, Sandbox, and so on). In this paper, we systematically analyze the security of LLM systems, instead of focusing on the individual LLMs. To do so, we build on top of the information flow and formulate the security of LLM systems as constraints on the alignment of the information flow within LLM and between LLM and other objects. Based on this construction and the unique probabilistic nature of LLM, the attack surface of the LLM system can be decomposed into three key components: (1) multi-layer security analysis, (2) analysis of the existence of constraints, and (3) analysis of the robustness of these constraints. To ground this new attack surface, we propose a multi-layer and multi-step approach and apply it to the state-of-art LLM system, OpenAI GPT4. Our investigation exposes several security issues, not just within the LLM model itself but also in its integration with other components. We found that although the OpenAI GPT4 has designed numerous safety constraints to improve its safety features, these safety constraints are still vulnerable to attackers. To further demonstrate the real-world threats of our discovered vulnerabilities, we construct an end-to-end attack where an adversary can illicitly acquire the user's chat history, all without the need to manipulate the user's input or gain direct access to OpenAI GPT4. Our demo is in the link: https://fzwark.github.io/LLM-System-Attack-Demo/


WIPI: A New Web Threat for LLM-Driven Web Agents

arXiv.org Artificial Intelligence

With the fast development of large language models (LLMs), LLM-driven Web Agents (Web Agents for short) have obtained tons of attention due to their superior capability where LLMs serve as the core part of making decisions like the human brain equipped with multiple web tools to actively interact with external deployed websites. As uncountable Web Agents have been released and such LLM systems are experiencing rapid development and drawing closer to widespread deployment in our daily lives, an essential and pressing question arises: "Are these Web Agents secure?". In this paper, we introduce a novel threat, WIPI, that indirectly controls Web Agent to execute malicious instructions embedded in publicly accessible webpages. To launch a successful WIPI works in a black-box environment. This methodology focuses on the form and content of indirect instructions within external webpages, enhancing the efficiency and stealthiness of the attack. To evaluate the effectiveness of the proposed methodology, we conducted extensive experiments using 7 plugin-based ChatGPT Web Agents, 8 Web GPTs, and 3 different open-source Web Agents. The results reveal that our methodology achieves an average attack success rate (ASR) exceeding 90% even in pure black-box scenarios. Moreover, through an ablation study examining various user prefix instructions, we demonstrated that the WIPI exhibits strong robustness, maintaining high performance across diverse prefix instructions.