Goto

Collaborating Authors

 Xiang Wu




Dual Variational Generation for Low Shot Heterogeneous Face Recognition

Neural Information Processing Systems

Heterogeneous Face Recognition (HFR) is a challenging issue because of the large domain discrepancy and a lack of heterogeneous data. This paper considers HFR as a dual generation problem, and proposes a novel Dual Variational Generation (DVG) framework. It generates large-scale new paired heterogeneous images with the same identity from noise, for the sake of reducing the domain gap of HFR. Specifically, we first introduce a dual variational autoencoder to represent a joint distribution of paired heterogeneous images. Then, in order to ensure the identity consistency of the generated paired heterogeneous images, we impose a distribution alignment in the latent space and a pairwise identity preserving in the image space. Moreover, the HFR network reduces the domain discrepancy by constraining the pairwise feature distances between the generated paired heterogeneous images. Extensive experiments on four HFR databases show that our method can significantly improve state-of-the-art results.


Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces

Neural Information Processing Systems

In extreme classification settings, embedding-based neural network models are currently not competitive with sparse linear and tree-based methods in terms of accuracy. Most prior works attribute this poor performance to the low-dimensional bottleneck in embedding-based methods. In this paper, we demonstrate that theoretically there is no limitation to using low-dimensional embedding-based methods, and provide experimental evidence that overfitting is the root cause of the poor performance of embedding-based methods. These findings motivate us to investigate novel data augmentation and regularization techniques to mitigate overfitting. To this end, we propose GLaS, a new regularizer for embedding-based neural network approaches. It is a natural generalization from the graph Laplacian and spread-out regularizers, and empirically it addresses the drawback of each regularizer alone when applied to the extreme classification setup. With the proposed techniques, we attain or improve upon the state-of-the-art on most widely tested public extreme classification datasets with hundreds of thousands of labels.