Goto

Collaborating Authors

 Xiang, Xiang


OpenEarthSensing: Large-Scale Fine-Grained Benchmark for Open-World Remote Sensing

arXiv.org Artificial Intelligence

In open-world remote sensing, deployed models must continuously adapt to a steady influx of new data, which often exhibits various shifts compared to what the model encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update themselves. These challenges give rise to a variety of open-world tasks. However, existing open-world remote sensing studies typically train and test within a single dataset to simulate open-world conditions. Currently, there is a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce OpenEarthSensing, a large-scale fine-grained benchmark for open-world remote sensing. OpenEarthSensing includes 189 scene and objects categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, OpenEarthSensing encompasses five data domains with significant covariate shifts, including two RGB satellite domians, one RGB aerial domian, one MS RGB domian, and one infrared domian. The various domains provide a more comprehensive testbed for evaluating the generalization performance of open-world models. We conduct the baseline evaluation of current mainstream open-world tasks and methods on OpenEarthSensing, demonstrating that it serves as a challenging benchmark for open-world remote sensing.


YOLOOC: YOLO-based Open-Class Incremental Object Detection with Novel Class Discovery

arXiv.org Artificial Intelligence

Because of its use in practice, open-world object detection (OWOD) has gotten a lot of attention recently. The challenge is how can a model detect novel classes and then incrementally learn them without forgetting previously known classes. Previous approaches hinge on strongly-supervised or weakly-supervised novel-class data for novel-class detection, which may not apply to real applications. We construct a new benchmark that novel classes are only encountered at the inference stage. And we propose a new OWOD detector YOLOOC, based on the YOLO architecture yet for the Open-Class setup. We introduce label smoothing to prevent the detector from over-confidently mapping novel classes to known classes and to discover novel classes. Extensive experiments conducted on our more realistic setup demonstrate the effectiveness of our method for discovering novel classes in our new benchmark.


AI WALKUP: A Computer-Vision Approach to Quantifying MDS-UPDRS in Parkinson's Disease

arXiv.org Artificial Intelligence

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The existing assessment method for PD is usually the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) to assess the severity of various types of motor symptoms and disease progression. However, manual assessment suffers from high subjectivity, lack of consistency, and high cost and low efficiency of manual communication. We want to use a computer vision based solution to capture human pose images based on a camera, reconstruct and perform motion analysis using algorithms, and extract the features of the amount of motion through feature engineering. The proposed approach can be deployed on different smartphones, and the video recording and artificial intelligence analysis can be done quickly and easily through our APP. Keywords: Parkinson's Disease motor assessment pose estimation


Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer

arXiv.org Artificial Intelligence

Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting. The introduction of pre-trained models has brought new tuning paradigms to CIL. In this paper, we revisit different parameter-efficient tuning (PET) methods within the context of continual learning. We observe that adapter tuning demonstrates superiority over prompt-based methods, even without parameter expansion in each learning session. Motivated by this, we propose incrementally tuning the shared adapter without imposing parameter update constraints, enhancing the learning capacity of the backbone. Additionally, we employ feature sampling from stored prototypes to retrain a unified classifier, further improving its performance. We estimate the semantic shift of old prototypes without access to past samples and update stored prototypes session by session. Our proposed method eliminates model expansion and avoids retaining any image samples. It surpasses previous pre-trained model-based CIL methods and demonstrates remarkable continual learning capabilities. Experimental results on five CIL benchmarks validate the effectiveness of our approach, achieving state-of-the-art (SOTA) performance.


Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning

arXiv.org Artificial Intelligence

Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, making them highly successful in a variety of tasks. However, when used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4. As intelligent agents, LLMs need to have the capabilities of task planning, long-term memory, and the ability to leverage external tools to achieve satisfactory performance. Various methods have been proposed to enhance the agent capabilities of LLMs. On the one hand, methods involve constructing agent-specific data and fine-tuning the models. On the other hand, some methods focus on designing prompts that effectively activate the reasoning abilities of the LLMs. We explore both strategies on the 7B and 13B models. We propose a comprehensive method for constructing agent-specific data using GPT-4. Through supervised fine-tuning with constructed data, we find that for these models with a relatively small number of parameters, supervised fine-tuning can significantly reduce hallucination outputs and formatting errors in agent tasks. Furthermore, techniques such as multi-path reasoning and task decomposition can effectively decrease problem complexity and enhance the performance of LLMs as agents. We evaluate our method on five agent tasks of AgentBench and achieve satisfactory results.


Introduction to The Dynamic Pickup and Delivery Problem Benchmark -- ICAPS 2021 Competition

arXiv.org Artificial Intelligence

The Dynamic Pickup and Delivery Problem (DPDP) is an essential problem within the logistics domain. So far, research on this problem has mainly focused on using artificial data which fails to reflect the complexity of real-world problems. In this draft, we would like to introduce a new benchmark from real business scenarios as well as a simulator supporting the dynamic evaluation. The benchmark and simulator have been published and successfully supported the ICAPS 2021 Dynamic Pickup and Delivery Problem competition participated by 152 teams.


Entropy-based Optimization via A* Algorithm for Parking Space Recommendation

arXiv.org Artificial Intelligence

This paper addresses the path planning problems for recommending parking spaces, given the difficulties of identifying the most optimal route to vacant parking spaces and the shortest time to leave the parking space. Our optimization approach is based on the entropy method and realized by the A* algorithm. Experiments have shown that the combination of A* and the entropy value induces the optimal parking solution with the shortest route while being robust to environmental factors.


Linear Disentangled Representation Learning for Facial Actions

arXiv.org Machine Learning

Limited annotated data available for the recognition of facial expression and action units embarrasses the training of deep networks, which can learn disentangled invariant features. However, a linear model with just several parameters normally is not demanding in terms of training data. In this paper, we propose an elegant linear model to untangle confounding factors in challenging realistic multichannel signals such as 2D face videos. The simple yet powerful model does not rely on huge training data and is natural for recognizing facial actions without explicitly disentangling the identity. Base on well-understood intuitive linear models such as Sparse Representation based Classification (SRC), previous attempts require a prepossessing of explicit decoupling which is practically inexact. Instead, we exploit the low-rank property across frames to subtract the underlying neutral faces which are modeled jointly with sparse representation on the action components with group sparsity enforced. On the extended Cohn-Kanade dataset (CK+), our one-shot automatic method on raw face videos performs as competitive as SRC applied on manually prepared action components and performs even better than SRC in terms of true positive rate. We apply the model to the even more challenging task of facial action unit recognition, verified on the MPI Face Video Database (MPI-VDB) achieving a decent performance. All the programs and data have been made publicly available.


Pose-Selective Max Pooling for Measuring Similarity

arXiv.org Artificial Intelligence

In this paper, we deal with two challenges for measuring the similarity of the subject identities in practical video-based face recognition - the variation of the head pose in uncontrolled environments and the computational expense of processing videos. Since the frame-wise feature mean is unable to characterize the pose diversity among frames, we define and preserve the overall pose diversity and closeness in a video. Then, identity will be the only source of variation across videos since the pose varies even within a single video. Instead of simply using all the frames, we select those faces whose pose point is closest to the centroid of the K-means cluster containing that pose point. Then, we represent a video as a bag of frame-wise deep face features while the number of features has been reduced from hundreds to K. Since the video representation can well represent the identity, now we measure the subject similarity between two videos as the max correlation among all possible pairs in the two bags of features. On the official 5,000 video-pairs of the YouTube Face dataset for face verification, our algorithm achieves a comparable performance with VGG-face that averages over deep features of all frames. Other vision tasks can also benefit from the generic idea of employing geometric cues to improve the descriptiveness of deep features.