Goto

Collaborating Authors

 Xiang, Cheng


Evolving R2 to R2+: Optimal, Delayed Line-of-sight Vector-based Path Planning

arXiv.org Artificial Intelligence

A vector-based any-angle path planner, R2, is evolved in to R2+ in this paper. By delaying line-of-sight, R2 and R2+ search times are largely unaffected by the distance between the start and goal points, but are exponential in the worst case with respect to the number of collisions during searches. To improve search times, additional discarding conditions in the overlap rule are introduced in R2+. In addition, R2+ resolves interminable chases in R2 by replacing ad hoc points with limited occupied-sector traces from target nodes, and simplifies R2 by employing new abstract structures and ensuring target progression during a trace. R2+ preserves the speed of R2 when paths are expected to detour around few obstacles, and searches significantly faster than R2 in maps with many disjoint obstacles.


Practical Battery Health Monitoring using Uncertainty-Aware Bayesian Neural Network

arXiv.org Artificial Intelligence

Battery health monitoring and prediction are critically important in the era of electric mobility with a huge impact on safety, sustainability, and economic aspects. Existing research often focuses on prediction accuracy but tends to neglect practical factors that may hinder the technology's deployment in real-world applications. In this paper, we address these practical considerations and develop models based on the Bayesian neural network for predicting battery end-of-life. Our models use sensor data related to battery health and apply distributions, rather than single-point, for each parameter of the models. This allows the models to capture the inherent randomness and uncertainty of battery health, which leads to not only accurate predictions but also quantifiable uncertainty. We conducted an experimental study and demonstrated the effectiveness of our proposed models, with a prediction error rate averaging 13.9%, and as low as 2.9% for certain tested batteries. Additionally, all predictions include quantifiable certainty, which improved by 66% from the initial to the mid-life stage of the battery. This research has practical values for battery technologies and contributes to accelerating the technology adoption in the industry.


R2: Heuristic Bug-Based Any-angle Path-Planning using Lazy Searches

arXiv.org Artificial Intelligence

R2 is a novel online any-angle path planner that uses heuristic bug-based or ray casting approaches to find optimal paths in 2D maps with non-convex, polygonal obstacles. R2 is competitive to traditional free-space planners, finding paths quickly if queries have direct line-of-sight. On large sparse maps with few obstacle contours, which are likely to occur in practice, R2 outperforms free-space planners, and can be much faster than state-of-the-art free-space expansion planner Anya. On maps with many contours, Anya performs faster than R2. R2 is built on RayScan, introducing lazy-searches and a source-pledge counter to find successors optimistically on contiguous contours. The novel approach bypasses most successors on jagged contours to reduce expensive line-of-sight checks, therefore requiring no pre-processing to be a competitive online any-angle planner.