Xian, Yongqin
Active Data Curation Effectively Distills Large-Scale Multimodal Models
Udandarao, Vishaal, Parthasarathy, Nikhil, Naeem, Muhammad Ferjad, Evans, Talfan, Albanie, Samuel, Tombari, Federico, Xian, Yongqin, Tonioni, Alessio, Hénaff, Olivier J.
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones. Prior works have explored ever more complex KD strategies involving different objective functions, teacher-ensembles, and weight inheritance. In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining. Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations. Further, we find such an active data curation strategy to in fact be complementary to standard KD, and can be effectively combined to train highly performant inference-efficient models. Our simple and scalable pretraining framework, ACED, achieves state-of-the-art results across 27 zero-shot classification and retrieval tasks with upto 11% less inference FLOPs. We further demonstrate that our ACED models yield strong vision-encoders for training generative multimodal models in the LiT-Decoder setting, outperforming larger vision encoders for image-captioning and visual question-answering tasks.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Wang, Haiyang, Fan, Yue, Naeem, Muhammad Ferjad, Xian, Yongqin, Lenssen, Jan Eric, Wang, Liwei, Tombari, Federico, Schiele, Bernt
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce Tokenformer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs.
Learning Prototype Classifiers for Long-Tailed Recognition
Sharma, Saurabh, Xian, Yongqin, Yu, Ning, Singh, Ambuj
The problem of long-tailed recognition (LTR) has received attention in recent years due to the fundamental power-law distribution of objects in the real-world. Most recent works in LTR use softmax classifiers that are biased in that they correlate classifier norm with the amount of training data for a given class. In this work, we show that learning prototype classifiers addresses the biased softmax problem in LTR. Prototype classifiers can deliver promising results simply using Nearest-Class- Mean (NCM), a special case where prototypes are empirical centroids. We go one step further and propose to jointly learn prototypes by using distances to prototypes in representation space as the logit scores for classification. Further, we theoretically analyze the properties of Euclidean distance based prototype classifiers that lead to stable gradient-based optimization which is robust to outliers. To enable independent distance scales along each channel, we enhance Prototype classifiers by learning channel-dependent temperature parameters. Our analysis shows that prototypes learned by Prototype classifiers are better separated than empirical centroids. Results on four LTR benchmarks show that Prototype classifier outperforms or is comparable to state-of-the-art methods. Our code is made available at https://github.com/saurabhsharma1993/prototype-classifier-ltr.
Detecting Adversarial Faces Using Only Real Face Self-Perturbations
Wang, Qian, Xian, Yongqin, Ling, Hefei, Zhang, Jinyuan, Lin, Xiaorui, Li, Ping, Chen, Jiazhong, Yu, Ning
Adversarial attacks aim to disturb the functionality of a target system by adding specific noise to the input samples, bringing potential threats to security and robustness when applied to facial recognition systems. Although existing defense techniques achieve high accuracy in detecting some specific adversarial faces (adv-faces), new attack methods especially GAN-based attacks with completely different noise patterns circumvent them and reach a higher attack success rate. Even worse, existing techniques require attack data before implementing the defense, making it impractical to defend newly emerging attacks that are unseen to defenders. In this paper, we investigate the intrinsic generality of adv-faces and propose to generate pseudo adv-faces by perturbing real faces with three heuristically designed noise patterns. We are the first to train an adv-face detector using only real faces and their self-perturbations, agnostic to victim facial recognition systems, and agnostic to unseen attacks. By regarding adv-faces as out-of-distribution data, we then naturally introduce a novel cascaded system for adv-face detection, which consists of training data self-perturbations, decision boundary regularization, and a max-pooling-based binary classifier focusing on abnormal local color aberrations. Experiments conducted on LFW and CelebA-HQ datasets with eight gradient-based and two GAN-based attacks validate that our method generalizes to a variety of unseen adversarial attacks.
Distilling Audio-Visual Knowledge by Compositional Contrastive Learning
Chen, Yanbei, Xian, Yongqin, Koepke, A. Sophia, Shan, Ying, Akata, Zeynep
Having access to multi-modal cues (e.g. vision and audio) empowers some cognitive tasks to be done faster compared to learning from a single modality. In this work, we propose to transfer knowledge across heterogeneous modalities, even though these data modalities may not be semantically correlated. Rather than directly aligning the representations of different modalities, we compose audio, image, and video representations across modalities to uncover richer multi-modal knowledge. Our main idea is to learn a compositional embedding that closes the cross-modal semantic gap and captures the task-relevant semantics, which facilitates pulling together representations across modalities by compositional contrastive learning. We establish a new, comprehensive multi-modal distillation benchmark on three video datasets: UCF101, ActivityNet, and VGGSound. Moreover, we demonstrate that our model significantly outperforms a variety of existing knowledge distillation methods in transferring audio-visual knowledge to improve video representation learning. Code is released here: https://github.com/yanbeic/CCL.