Xia, Yingce
BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining
Luo, Renqian, Sun, Liai, Xia, Yingce, Qin, Tao, Zhang, Sheng, Poon, Hoifung, Liu, Tie-Yan
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e., BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature. We evaluate BioGPT on six biomedical NLP tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms. Code is available at https://github.com/microsoft/BioGPT.
De Novo Molecular Generation via Connection-aware Motif Mining
Geng, Zijie, Xie, Shufang, Xia, Yingce, Wu, Lijun, Qin, Tao, Wang, Jie, Zhang, Yongdong, Wu, Feng, Liu, Tie-Yan
De novo molecular generation is an essential task for science discovery. Recently, fragment-based deep generative models have attracted much research attention due to their flexibility in generating novel molecules based on existing molecule fragments. However, the motif vocabulary, i.e., the collection of frequent fragments, is usually built upon heuristic rules, which brings difficulties to capturing common substructures from large amounts of molecules. In this work, we propose a new method, MiCaM, to generate molecules based on mined connection-aware motifs. Specifically, it leverages a data-driven algorithm to automatically discover motifs from a molecule library by iteratively merging subgraphs based on their frequency. The obtained motif vocabulary consists of not only molecular motifs (i.e., the frequent fragments), but also their connection information, indicating how the motifs are connected with each other. Based on the mined connection-aware motifs, MiCaM builds a connection-aware generator, which simultaneously picks up motifs and determines how they are connected. We test our method on distribution-learning benchmarks (i.e., generating novel molecules to resemble the distribution of a given training set) and goal-directed benchmarks (i.e., generating molecules with target properties), and achieve significant improvements over previous fragment-based baselines. Furthermore, we demonstrate that our method can effectively mine domain-specific motifs for different tasks.
Incorporating Pre-training Paradigm for Antibody Sequence-Structure Co-design
Gao, Kaiyuan, Wu, Lijun, Zhu, Jinhua, Peng, Tianbo, Xia, Yingce, He, Liang, Xie, Shufang, Qin, Tao, Liu, Haiguang, He, Kun, Liu, Tie-Yan
Antibodies are versatile proteins that can bind to pathogens and provide effective protection for human body. Recently, deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences. However, the computational methods heavily rely on high-quality antibody structure data, which is quite limited. Besides, the complementarity-determining region (CDR), which is the key component of an antibody that determines the specificity and binding affinity, is highly variable and hard to predict. Therefore, the data limitation issue further raises the difficulty of CDR generation for antibodies. Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data. By witnessing the success of pre-training models for protein modeling, in this paper, we develop the antibody pre-training language model and incorporate it into the (antigen-specific) antibody design model in a systemic way. Specifically, we first pre-train an antibody language model based on the sequence data, then propose a one-shot way for sequence and structure generation of CDR to avoid the heavy cost and error propagation from an autoregressive manner, and finally leverage the pre-trained antibody model for the antigen-specific antibody generation model with some carefully designed modules. Through various experiments, we show that our method achieves superior performances over previous baselines on different tasks, such as sequence and structure generation and antigen-binding CDR-H3 design.
Direct Molecular Conformation Generation
Zhu, Jinhua, Xia, Yingce, Liu, Chang, Wu, Lijun, Xie, Shufang, Wang, Tong, Wang, Yusong, Zhou, Wengang, Qin, Tao, Li, Houqiang, Liu, Tie-Yan
Molecular conformation generation aims to generate three-dimensional coordinates of all the atoms in a molecule and is an important task in bioinformatics and pharmacology. Previous distance-based methods first predict interatomic distances and then generate conformations based on them, which could result in conflicting distances. In this work, we propose a method that directly predicts the coordinates of atoms. We design a dedicated loss function for conformation generation, which is invariant to roto-translation of coordinates of conformations and permutation of symmetric atoms in molecules. We further design a backbone model that stacks multiple blocks, where each block refines the conformation generated by its preceding block. Our method achieves state-of-the-art results on four public benchmarks: on small-scale GEOM-QM9 and GEOM-Drugs which have $200$K training data, we can improve the previous best matching score by $3.5\%$ and $28.9\%$; on large-scale GEOM-QM9 and GEOM-Drugs which have millions of training data, those two improvements are $47.1\%$ and $36.3\%$. This shows the effectiveness of our method and the great potential of the direct approach. Our code is released at \url{https://github.com/DirectMolecularConfGen/DMCG}.
DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation
Li, Wendi, Yang, Xiao, Liu, Weiqing, Xia, Yingce, Bian, Jiang
In many real-world scenarios, we often deal with streaming data that is sequentially collected over time. Due to the non-stationary nature of the environment, the streaming data distribution may change in unpredictable ways, which is known as concept drift. To handle concept drift, previous methods first detect when/where the concept drift happens and then adapt models to fit the distribution of the latest data. However, there are still many cases that some underlying factors of environment evolution are predictable, making it possible to model the future concept drift trend of the streaming data, while such cases are not fully explored in previous work. In this paper, we propose a novel method DDG-DA, that can effectively forecast the evolution of data distribution and improve the performance of models. Specifically, we first train a predictor to estimate the future data distribution, then leverage it to generate training samples, and finally train models on the generated data. We conduct experiments on three real-world tasks (forecasting on stock price trend, electricity load and solar irradiance) and obtain significant improvement on multiple widely-used models.
Pre-training Co-evolutionary Protein Representation via A Pairwise Masked Language Model
He, Liang, Zhang, Shizhuo, Wu, Lijun, Xia, Huanhuan, Ju, Fusong, Zhang, He, Liu, Siyuan, Xia, Yingce, Zhu, Jianwei, Deng, Pan, Shao, Bin, Qin, Tao, Liu, Tie-Yan
Understanding protein sequences is vital and urgent for biology, healthcare, and medicine. Labeling approaches are expensive yet time-consuming, while the amount of unlabeled data is increasing quite faster than that of the labeled data due to low-cost, high-throughput sequencing methods. In order to extract knowledge from these unlabeled data, representation learning is of significant value for protein-related tasks and has great potential for helping us learn more about protein functions and structures. The key problem in the protein sequence representation learning is to capture the co-evolutionary information reflected by the inter-residue co-variation in the sequences. Instead of leveraging multiple sequence alignment as is usually done, we propose a novel method to capture this information directly by pre-training via a dedicated language model, i.e., Pairwise Masked Language Model (PMLM). In a conventional masked language model, the masked tokens are modeled by conditioning on the unmasked tokens only, but processed independently to each other. However, our proposed PMLM takes the dependency among masked tokens into consideration, i.e., the probability of a token pair is not equal to the product of the probability of the two tokens. By applying this model, the pre-trained encoder is able to generate a better representation for protein sequences. Our result shows that the proposed method can effectively capture the inter-residue correlations and improves the performance of contact prediction by up to 9% compared to the MLM baseline under the same setting. The proposed model also significantly outperforms the MSA baseline by more than 7% on the TAPE contact prediction benchmark when pre-trained on a subset of the sequence database which the MSA is generated from, revealing the potential of the sequence pre-training method to surpass MSA based methods in general.
Discovering Drug-Target Interaction Knowledge from Biomedical Literature
Hou, Yutai, Xia, Yingce, Wu, Lijun, Xie, Shufang, Fan, Yang, Zhu, Jinhua, Che, Wanxiang, Qin, Tao, Liu, Tie-Yan
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications. As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from biomedical literature, which are usually triplets about drugs, targets and their interaction, becomes an urgent demand in the industry. Existing methods of discovering biological knowledge are mainly extractive approaches that often require detailed annotations (e.g., all mentions of biological entities, relations between every two entity mentions, etc.). However, it is difficult and costly to obtain sufficient annotations due to the requirement of expert knowledge from biomedical domains. To overcome these difficulties, we explore the first end-to-end solution for this task by using generative approaches. We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations. Further, we propose a semi-supervised method, which leverages the aforementioned end-to-end model to filter unlabeled literature and label them. Experimental results show that our method significantly outperforms extractive baselines on DTI discovery. We also create a dataset, KD-DTI, to advance this task and will release it to the community.
IOT: Instance-wise Layer Reordering for Transformer Structures
Zhu, Jinhua, Wu, Lijun, Xia, Yingce, Xie, Shufang, Qin, Tao, Zhou, Wengang, Li, Houqiang, Liu, Tie-Yan
With sequentially stacked self-attention, (optional) encoder-decoder attention, and feed-forward layers, Transformer achieves big success in natural language processing (NLP), and many variants have been proposed. Currently, almost all these models assume that the layer order is fixed and kept the same across data samples. We observe that different data samples actually favor different orders of the layers. Based on this observation, in this work, we break the assumption of the fixed layer order in the Transformer and introduce instance-wise layer reordering into the model structure. Our Instance-wise Ordered Transformer (IOT) can model variant functions by reordered layers, which enables each sample to select the better one to improve the model performance under the constraint of almost the same number of parameters. To achieve this, we introduce a light predictor with negligible parameter and inference cost to decide the most capable and favorable layer order for any input sequence. Experiments on 3 tasks (neural machine translation, abstractive summarization, and code generation) and 9 datasets demonstrate consistent improvements of our method. We further show that our method can also be applied to other architectures beyond Transformer. Our code is released at Github.
COSEA: Convolutional Code Search with Layer-wise Attention
Wang, Hao, Zhang, Jia, Xia, Yingce, Bian, Jiang, Zhang, Chao, Liu, Tie-Yan
Semantic code search, which aims to retrieve code snippets relevant to a given natural language query, has attracted many research efforts with the purpose of accelerating software development. The huge amount of online publicly available code repositories has prompted the employment of deep learning techniques to build state-of-the-art code search models. Particularly, they leverage deep neural networks to embed codes and queries into a unified semantic vector space and then use the similarity between code's and query's vectors to approximate the semantic correlation between code and the query. However, most existing studies overlook the code's intrinsic structural logic, which indeed contains a wealth of semantic information, and fails to capture intrinsic features of codes. In this paper, we propose a new deep learning architecture, COSEA, which leverages convolutional neural networks with layer-wise attention to capture the valuable code's intrinsic structural logic. To further increase the learning efficiency of COSEA, we propose a variant of contrastive loss for training the code search model, where the ground-truth code should be distinguished from the most similar negative sample. We have implemented a prototype of COSEA. Extensive experiments over existing public datasets of Python and SQL have demonstrated that COSEA can achieve significant improvements over state-of-the-art methods on code search tasks.
Learning to Teach with Deep Interactions
Fan, Yang, Xia, Yingce, Wu, Lijun, Xie, Shufang, Liu, Weiqing, Bian, Jiang, Qin, Tao, Li, Xiang-Yang, Liu, Tie-Yan
Machine teaching uses a meta/teacher model to guide the training of a student model (which will be used in real tasks) through training data selection, loss function design, etc. Previously, the teacher model only takes shallow/surface information as inputs (e.g., training iteration number, loss and accuracy from training/validation sets) while ignoring the internal states of the student model, which limits the potential of learning to teach. In this work, we propose an improved data teaching algorithm, where the teacher model deeply interacts with the student model by accessing its internal states. The teacher model is jointly trained with the student model using meta gradients propagated from a validation set. We conduct experiments on image classification with clean/noisy labels and empirically demonstrate that our algorithm makes significant improvement over previous data teaching methods.