Xia, Xiuxin
Optimizing food taste sensory evaluation through neural network-based taste electroencephalogram channel selection
Xia, Xiuxin, Wang, Qun, Wang, He, Liu, Chenrui, Li, Pengwei, Shi, Yan, Men, Hong
The taste electroencephalogram (EEG) evoked by the taste stimulation can reflect different brain patterns and be used in applications such as sensory evaluation of food. However, considering the computational cost and efficiency, EEG data with many channels has to face the critical issue of channel selection. This paper proposed a channel selection method called class activation mapping with attention (CAM-Attention). The CAM-Attention method combined a convolutional neural network with channel and spatial attention (CNN-CSA) model with a gradient-weighted class activation mapping (Grad-CAM) model. The CNN-CSA model exploited key features in EEG data by attention mechanism, and the Grad-CAM model effectively realized the visualization of feature regions. Then, channel selection was effectively implemented based on feature regions. Finally, the CAM-Attention method reduced the computational burden of taste EEG recognition and effectively distinguished the four tastes. In short, it has excellent recognition performance and provides effective technical support for taste sensory evaluation.
Human-Machine Cooperative Multimodal Learning Method for Cross-subject Olfactory Preference Recognition
Xia, Xiuxin, Guo, Yuchen, Wang, Yanwei, Yang, Yuchao, Shi, Yan, Men, Hong
Odor sensory evaluation has a broad application in food, clothing, cosmetics, and other fields. Traditional artificial sensory evaluation has poor repeatability, and the machine olfaction represented by the electronic nose (E-nose) is difficult to reflect human feelings. Olfactory electroencephalogram (EEG) contains odor and individual features associated with human olfactory preference, which has unique advantages in odor sensory evaluation. However, the difficulty of cross-subject olfactory EEG recognition greatly limits its application. It is worth noting that E-nose and olfactory EEG are more advantageous in representing odor information and individual emotions, respectively. In this paper, an E-nose and olfactory EEG multimodal learning method is proposed for cross-subject olfactory preference recognition. Firstly, the olfactory EEG and E-nose multimodal data acquisition and preprocessing paradigms are established. Secondly, a complementary multimodal data mining strategy is proposed to effectively mine the common features of multimodal data representing odor information and the individual features in olfactory EEG representing individual emotional information. Finally, the cross-subject olfactory preference recognition is achieved in 24 subjects by fusing the extracted common and individual features, and the recognition effect is superior to the state-of-the-art recognition methods. Furthermore, the advantages of the proposed method in cross-subject olfactory preference recognition indicate its potential for practical odor evaluation applications.