Goto

Collaborating Authors

 Xia, Lirong


Stackelberg Voting Games: Computational Aspects and Paradoxes

AAAI Conferences

We consider settings in which voters vote in sequence, each voter knows the votes of the earlier voters and the preferences of the later voters, and voters are strategic. This can be modeled as an extensive-form game of perfect information, which we call a Stackelberg voting game. We first propose a dynamic-programming algorithm for finding the backward-induction outcome for any Stackelberg voting game when the rule is anonymous; this algorithm is efficient if the number of alternatives is no more than a constant. We show how to use compilation functions to further reduce the time and space requirements. Our main theoretical results are paradoxes for the backward-induction outcomes of Stackelberg voting games. We show that for any n ≥ 5 and any voting rule that satisfies nonimposition and with a low domination index, there exists a profile consisting of n voters, such that the backward-induction outcome is ranked somewhere in the bottom two positions in almost every voter’s preferences. Moreover, this outcome loses all but one of its pairwise elections. Furthermore, we show that many common voting rules have a very low (= 1) domination index, including all majority-consistent voting rules. For the plurality and nomination rules, we show even stronger paradoxes. Finally, using our dynamic-programming algorithm, we run simulations to compare the backward-induction outcome of the Stackelberg voting game to the winner when voters vote truthfully, for the plurality and veto rules. Surprisingly, our experimental results suggest that on average, more voters prefer the backward-induction outcome.


Computational Social Choice: Strategic and Combinatorial Aspects

AAAI Conferences

When agents have conflicting preferences over a set of alternatives and they want to make a joint decision, a natural way to do so is by voting. How to design and analyze desirable voting rules has been studied by economists for centuries. In recent decades, technological advances, especially those in internet economy, have introduced many new applications for voting theory. For example, we can rate movies based on people’s preferences, as done on many movie recommendation sites. However, in such new applications, we always encounter a large number of alternatives or an overwhelming amount of information, which makes computation in voting process a big challenge. Such challenges have led to a burgeoning area—computational social choice, aiming to address problems in computational aspects of preference representation and aggregation in a multi-agent scenario. The high-level goal of my research is to better understand and prevent the agents’ (strategic) behavior in voting systems, as well as to design computationally efficient ways for agents to present their preferences and make a joint decision.


Complexity of Unweighted Coalitional Manipulation Under Some Common Voting Rules

AAAI Conferences

Understanding the computational complexity of manipulation in elections is arguably the most central agenda in Computational Social Choice. One of the influential variations of the the problem involves a coalition of manipulators trying to make a favorite candidate win the election. Although the complexity of the problem is well-studied under the assumption that the voters are weighted, there were very few successful attempts to abandon this strong assumption. In this paper, we study the complexity of the unweighted coalitional manipulation problem (UCM) under several prominent voting rules. Our main result is that UCM is NP-complete under the maximin rule; this resolves an enigmatic open question. We then show that UCM is NP-complete under the ranked pairs rule, even with respect to a single manipulator. Furthermore, we provide an extreme hardness-of-approximation result for an optimization version of UCM under ranked pairs. Finally, we show that UCM under the Bucklin rule is in P.