Plotting

 Xia, Lianghao


OpenGraph: Towards Open Graph Foundation Models

arXiv.org Artificial Intelligence

Graph learning has become indispensable for interpreting and harnessing relational data in diverse fields, ranging from recommendation systems to social network analysis. In this context, a variety of GNNs have emerged as promising methodologies for encoding the structural information of graphs. By effectively capturing the graph's underlying structure, these GNNs have shown great potential in enhancing performance in graph learning tasks, such as link prediction and node classification. However, despite their successes, a significant challenge persists: these advanced methods often face difficulties in generalizing to unseen graph data that significantly differs from the training instances. In this work, our aim is to advance the graph learning paradigm by developing a general graph foundation model. This model is designed to understand the complex topological patterns present in diverse graph data, enabling it to excel in zero-shot graph learning tasks across different downstream datasets. To achieve this goal, we address several key technical challenges in our OpenGraph model. Firstly, we propose a unified graph tokenizer to adapt our graph model to generalize well on unseen graph data, even when the underlying graph properties differ significantly from those encountered during training. Secondly, we develop a scalable graph transformer as the foundational encoder, which effectively captures node-wise dependencies within the global topological context. Thirdly, we introduce a data augmentation mechanism enhanced by a LLM to alleviate the limitations of data scarcity in real-world scenarios. Extensive experiments validate the effectiveness of our framework. By adapting our OpenGraph to new graph characteristics and comprehending the nuances of diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings and domains.


Graph Augmentation for Recommendation

arXiv.org Artificial Intelligence

Graph augmentation with contrastive learning has gained significant attention in the field of recommendation systems due to its ability to learn expressive user representations, even when labeled data is limited. However, directly applying existing GCL models to real-world recommendation environments poses challenges. There are two primary issues to address. Firstly, the lack of consideration for data noise in contrastive learning can result in noisy self-supervised signals, leading to degraded performance. Secondly, many existing GCL approaches rely on graph neural network (GNN) architectures, which can suffer from over-smoothing problems due to non-adaptive message passing. To address these challenges, we propose a principled framework called GraphAug. This framework introduces a robust data augmentor that generates denoised self-supervised signals, enhancing recommender systems. The GraphAug framework incorporates a graph information bottleneck (GIB)-regularized augmentation paradigm, which automatically distills informative self-supervision information and adaptively adjusts contrastive view generation. Through rigorous experimentation on real-world datasets, we thoroughly assessed the performance of our novel GraphAug model. The outcomes consistently unveil its superiority over existing baseline methods. The source code for our model is publicly available at: https://github.com/HKUDS/GraphAug.


GraphEdit: Large Language Models for Graph Structure Learning

arXiv.org Artificial Intelligence

Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data by generating novel graph structures. Graph Neural Networks (GNNs) have emerged as promising GSL solutions, utilizing recursive message passing to encode node-wise inter-dependencies. However, many existing GSL methods heavily depend on explicit graph structural information as supervision signals, leaving them susceptible to challenges such as data noise and sparsity. In this work, we propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data. By enhancing the reasoning capabilities of LLMs through instruction-tuning over graph structures, we aim to overcome the limitations associated with explicit graph structural information and enhance the reliability of graph structure learning. Our approach not only effectively denoises noisy connections but also identifies node-wise dependencies from a global perspective, providing a comprehensive understanding of the graph structure. We conduct extensive experiments on multiple benchmark datasets to demonstrate the effectiveness and robustness of GraphEdit across various settings. We have made our model implementation available at: https://github.com/HKUDS/GraphEdit.


SSLRec: A Self-Supervised Learning Framework for Recommendation

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) has gained significant interest in recent years as a solution to address the challenges posed by sparse and noisy data in recommender systems. Despite the growing number of SSL algorithms designed to provide state-of-the-art performance in various recommendation scenarios (e.g., graph collaborative filtering, sequential recommendation, social recommendation, KG-enhanced recommendation), there is still a lack of unified frameworks that integrate recommendation algorithms across different domains. Such a framework could serve as the cornerstone for self-supervised recommendation algorithms, unifying the validation of existing methods and driving the design of new ones. To address this gap, we introduce SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders. The SSLRec framework features a modular architecture that allows users to easily evaluate state-of-the-art models and a complete set of data augmentation and self-supervised toolkits to help create SSL recommendation models with specific needs. Furthermore, SSLRec simplifies the process of training and evaluating different recommendation models with consistent and fair settings. Our SSLRec platform covers a comprehensive set of state-of-the-art SSL-enhanced recommendation models across different scenarios, enabling researchers to evaluate these cutting-edge models and drive further innovation in the field. Our implemented SSLRec framework is available at the source code repository https://github.com/HKUDS/SSLRec.


Representation Learning with Large Language Models for Recommendation

arXiv.org Artificial Intelligence

Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at https://github.com/HKUDS/RLMRec.


GraphPro: Graph Pre-training and Prompt Learning for Recommendation

arXiv.org Artificial Intelligence

GNN-based recommenders have excelled in modeling intricate user-item interactions through multi-hop message passing. However, existing methods often overlook the dynamic nature of evolving user-item interactions, which impedes the adaption to changing user preferences and distribution shifts in newly arriving data. Thus, their scalability and performances in real-world dynamic environments are limited. In this study, we propose GraphPro, a framework that incorporates parameter-efficient and dynamic graph pre-training with prompt learning. This novel combination empowers GNNs to effectively capture both long-term user preferences and short-term behavior dynamics, enabling the delivery of accurate and timely recommendations. Our GraphPro framework addresses the challenge of evolving user preferences by seamlessly integrating a temporal prompt mechanism and a graph-structural prompt learning mechanism into the pre-trained GNN model. The temporal prompt mechanism encodes time information on user-item interaction, allowing the model to naturally capture temporal context, while the graph-structural prompt learning mechanism enables the transfer of pre-trained knowledge to adapt to behavior dynamics without the need for continuous incremental training. We further bring in a dynamic evaluation setting for recommendation to mimic real-world dynamic scenarios and bridge the offline-online gap to a better level. Our extensive experiments including a large-scale industrial deployment showcases the lightweight plug-in scalability of our GraphPro when integrated with various state-of-the-art recommenders, emphasizing the advantages of GraphPro in terms of effectiveness, robustness and efficiency.


GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks

arXiv.org Artificial Intelligence

In recent years, there has been a rapid development of spatio-temporal prediction techniques in response to the increasing demands of traffic management and travel planning. While advanced end-to-end models have achieved notable success in improving predictive performance, their integration and expansion pose significant challenges. This work aims to address these challenges by introducing a spatio-temporal pre-training framework that seamlessly integrates with downstream baselines and enhances their performance. The framework is built upon two key designs: (i) We propose a spatio-temporal mask autoencoder as a pre-training model for learning spatio-temporal dependencies. The model incorporates customized parameter learners and hierarchical spatial pattern encoding networks. These modules are specifically designed to capture spatio-temporal customized representations and intra- and inter-cluster region semantic relationships, which have often been neglected in existing approaches. (ii) We introduce an adaptive mask strategy as part of the pre-training mechanism. This strategy guides the mask autoencoder in learning robust spatio-temporal representations and facilitates the modeling of different relationships, ranging from intra-cluster to inter-cluster, in an easy-to-hard training manner. Extensive experiments conducted on representative benchmarks demonstrate the effectiveness of our proposed method. We have made our model implementation publicly available at https://github.com/HKUDS/GPT-ST.


Explainable Spatio-Temporal Graph Neural Networks

arXiv.org Artificial Intelligence

Spatio-temporal graph neural networks (STGNNs) have gained popularity as a powerful tool for effectively modeling spatio-temporal dependencies in diverse real-world urban applications, including intelligent transportation and public safety. However, the black-box nature of STGNNs limits their interpretability, hindering their application in scenarios related to urban resource allocation and policy formulation. To bridge this gap, we propose an Explainable Spatio-Temporal Graph Neural Networks (STExplainer) framework that enhances STGNNs with inherent explainability, enabling them to provide accurate predictions and faithful explanations simultaneously. Our framework integrates a unified spatio-temporal graph attention network with a positional information fusion layer as the STG encoder and decoder, respectively. Furthermore, we propose a structure distillation approach based on the Graph Information Bottleneck (GIB) principle with an explainable objective, which is instantiated by the STG encoder and decoder. Through extensive experiments, we demonstrate that our STExplainer outperforms state-of-the-art baselines in terms of predictive accuracy and explainability metrics (i.e., sparsity and fidelity) on traffic and crime prediction tasks. Furthermore, our model exhibits superior representation ability in alleviating data missing and sparsity issues. The implementation code is available at: https://github.com/HKUDS/STExplainer.


Spatio-Temporal Meta Contrastive Learning

arXiv.org Artificial Intelligence

Spatio-temporal prediction is crucial in numerous real-world applications, including traffic forecasting and crime prediction, which aim to improve public transportation and safety management. Many state-of-the-art models demonstrate the strong capability of spatio-temporal graph neural networks (STGNN) to capture complex spatio-temporal correlations. However, despite their effectiveness, existing approaches do not adequately address several key challenges. Data quality issues, such as data scarcity and sparsity, lead to data noise and a lack of supervised signals, which significantly limit the performance of STGNN. Although recent STGNN models with contrastive learning aim to address these challenges, most of them use pre-defined augmentation strategies that heavily depend on manual design and cannot be customized for different Spatio-Temporal Graph (STG) scenarios. To tackle these challenges, we propose a new spatio-temporal contrastive learning (CL4ST) framework to encode robust and generalizable STG representations via the STG augmentation paradigm. Specifically, we design the meta view generator to automatically construct node and edge augmentation views for each disentangled spatial and temporal graph in a data-driven manner. The meta view generator employs meta networks with parameterized generative model to customize the augmentations for each input. This personalizes the augmentation strategies for every STG and endows the learning framework with spatio-temporal-aware information. Additionally, we integrate a unified spatio-temporal graph attention network with the proposed meta view generator and two-branch graph contrastive learning paradigms. Extensive experiments demonstrate that our CL4ST significantly improves performance over various state-of-the-art baselines in traffic and crime prediction.


How Expressive are Graph Neural Networks in Recommendation?

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation, where they leverage user-item collaborative filtering signals in graphs. However, theoretical formulations of their capability are scarce, despite their empirical effectiveness in state-of-the-art recommender models. Recently, research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test, and that GNNs combined with random node initialization are universal. Nevertheless, the concept of "expressiveness" for GNNs remains vaguely defined. Most existing works adopt the graph isomorphism test as the metric of expressiveness, but this graph-level task may not effectively assess a model's ability in recommendation, where the objective is to distinguish nodes of different closeness. In this paper, we provide a comprehensive theoretical analysis of the expressiveness of GNNs in recommendation, considering three levels of expressiveness metrics: graph isomorphism (graph-level), node automorphism (node-level), and topological closeness (link-level). We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes, which aligns closely with the objective of recommendation. To validate the effectiveness of this new metric in evaluating recommendation performance, we introduce a learning-less GNN algorithm that is optimal on the new metric and can be optimal on the node-level metric with suitable modification. We conduct extensive experiments comparing the proposed algorithm against various types of state-of-the-art GNN models to explore the explainability of the new metric in the recommendation task. For reproducibility, implementation codes are available at https://github.com/HKUDS/GTE.