Wunsch, Stefan
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
Wunsch, Stefan, Jörger, Simon, Wolf, Roger, Quast, Günter
Data analysis in science, e.g., high-energy particle physics, is often subject to an intractable likelihood if the observables and observations span a high-dimensional input space. Typically the problem is solved by reducing the dimensionality using feature engineering and histograms, whereby the latter technique allows to build the likelihood using Poisson statistics. However, in the presence of systematic uncertainties represented by nuisance parameters in the likelihood, the optimal dimensionality reduction with a minimal loss of information about the parameters of interest is not known. This work presents a novel strategy to construct the dimensionality reduction with neural networks for feature engineering and a differential formulation of histograms so that the full workflow can be optimized with the result of the statistical inference, e.g., the variance of a parameter of interest, as objective. We discuss how this approach results in an estimate of the parameters of interest that is close to optimal and the applicability of the technique is demonstrated with a simple example based on pseudo-experiments and a more complex example from high-energy particle physics.
Machine Learning in High Energy Physics Community White Paper
Albertsson, Kim, Altoe, Piero, Anderson, Dustin, Andrews, Michael, Espinosa, Juan Pedro Araque, Aurisano, Adam, Basara, Laurent, Bevan, Adrian, Bhimji, Wahid, Bonacorsi, Daniele, Calafiura, Paolo, Campanelli, Mario, Capps, Louis, Carminati, Federico, Carrazza, Stefano, Childers, Taylor, Coniavitis, Elias, Cranmer, Kyle, David, Claire, Davis, Douglas, Duarte, Javier, Erdmann, Martin, Eschle, Jonas, Farbin, Amir, Feickert, Matthew, Castro, Nuno Filipe, Fitzpatrick, Conor, Floris, Michele, Forti, Alessandra, Garra-Tico, Jordi, Gemmler, Jochen, Girone, Maria, Glaysher, Paul, Gleyzer, Sergei, Gligorov, Vladimir, Golling, Tobias, Graw, Jonas, Gray, Lindsey, Greenwood, Dick, Hacker, Thomas, Harvey, John, Hegner, Benedikt, Heinrich, Lukas, Hooberman, Ben, Junggeburth, Johannes, Kagan, Michael, Kane, Meghan, Kanishchev, Konstantin, Karpiński, Przemysław, Kassabov, Zahari, Kaul, Gaurav, Kcira, Dorian, Keck, Thomas, Klimentov, Alexei, Kowalkowski, Jim, Kreczko, Luke, Kurepin, Alexander, Kutschke, Rob, Kuznetsov, Valentin, Köhler, Nicolas, Lakomov, Igor, Lannon, Kevin, Lassnig, Mario, Limosani, Antonio, Louppe, Gilles, Mangu, Aashrita, Mato, Pere, Meenakshi, Narain, Meinhard, Helge, Menasce, Dario, Moneta, Lorenzo, Moortgat, Seth, Neubauer, Mark, Newman, Harvey, Pabst, Hans, Paganini, Michela, Paulini, Manfred, Perdue, Gabriel, Perez, Uzziel, Picazio, Attilio, Pivarski, Jim, Prosper, Harrison, Psihas, Fernanda, Radovic, Alexander, Reece, Ryan, Rinkevicius, Aurelius, Rodrigues, Eduardo, Rorie, Jamal, Rousseau, David, Sauers, Aaron, Schramm, Steven, Schwartzman, Ariel, Severini, Horst, Seyfert, Paul, Siroky, Filip, Skazytkin, Konstantin, Sokoloff, Mike, Stewart, Graeme, Stienen, Bob, Stockdale, Ian, Strong, Giles, Thais, Savannah, Tomko, Karen, Upfal, Eli, Usai, Emanuele, Ustyuzhanin, Andrey, Vala, Martin, Vallecorsa, Sofia, Verzetti, Mauro, Vilasís-Cardona, Xavier, Vlimant, Jean-Roch, Vukotic, Ilija, Wang, Sean-Jiun, Watts, Gordon, Williams, Michael, Wu, Wenjing, Wunsch, Stefan, Zapata, Omar
Machine learning is an important research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.